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1. Understanding Generative AI

1.1. A Revolution in Software Engineering

Artificial Intelligence (AI) is a broad category of technology systems that combine machine learning 
and data processing to perform tasks that have typically required human intelligence, such as language 
translation, speech recognition, and vision-based object identification. Generative AI refers to a subset 
of these technology systems that utilize deep learning algorithms to identify and learn from important 
patterns in large datasets.

However, generative AI is not just another tool; when used correctly it has the potential to significantly 
boost the productivity of software engineering teams.

It is becoming clear that effectively harnessing generative AI will become a strategic imperative for 
software engineering teams. Unfortunately, there is a lack of guidance for engineering team leaders 
regarding how this technology can be used to increase their teams’ performance, productivity, and work 
engagement. This paper addresses this gap by providing information on three important aspects of 
generative AI in relation to software engineering: 1) how to collaborate with AI, 2) which AI to collaborate 
with, and 3) how to build effective AI systems.

Generative AI has the potential to transform many industries as organizations 
stand to benefit from its ability to automate information retrieval and 
content generation. For example, in the education industry, librarians [1] 
and academic researchers [2] can use generative AI for tasks ranging from 
automated information cataloging to summarizing volumes of peer-reviewed 
papers. In the medical sector, generative AI can assist in predicting protein 
structures, which can accelerate drug discovery [3]. In the Architecture, (Civil) 
Engineering, and Construction (AEC) industry, generative AI can automate 
compliance checking by comparing building design specifications against 
safety codes [4]. Unsurprisingly, generative AI is also poised to disrupt 
the content creation industry by enabling the development of increasingly 
sophisticated artwork such as poetry, music, and multiple forms of visual art, 
and it will be able to do this at scale. These are just a few examples of how 
generative AI could transform entire industries over the coming years.

We hope the information in this paper provides clarity and stimulates some ideas for using generative AI 
to optimize the outputs of your engineering teams.

What distinguishes generative AI from other forms 
of AI is its ability to apply these learned patterns to 
create original and professional-level content, such 
as short stories, photorealistic images, songs, 
high-fidelity videos, and even code for computer 
programs. Generative AI’s ability to create code 
that satisfies a user’s requirements makes it a 
powerful new tool in the software engineer’s tool 
bag.

However, generative AI is 
not just another tool; when 
used correctly it has the 
potential to significantly 
boost the productivity of 
software engineering teams. 
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In the technology industry specifically, generative 
AI is already having a strong impact and has 
enormous potential to revolutionize long-
established practices and methods.

For example, AWS CodeWhisperer, powered 
by generative AI, provides engineers with 
code recommendations and has been found 
to significantly multiply a software engineer’s 
productivity, often by accelerating the initial stages 
of code development [5]. Using tools like this 
allows software engineers to spend less time on 
routine code development tasks and more time 
applying their expertise to solve more complex, 
challenging, and engaging problems. This freeing 
up of cognitive capacity and engineering expertise 
is likely to lead to more innovative and optimized 
software solutions.

While generative AI tools come with great potential 
to increase the efficiency and productivity of 
engineering teams, the ability to reap this potential 

is limited to those who can collaborate with 
them effectively. For example, while generative 
AI models can successfully write code for fairly 
simple tasks, they tend to struggle with more 
complex coding tasks [6][7]. While this may change 
as generative AI models become increasingly more 
sophisticated, we strongly believe that human 
engineering expertise will remain a crucial element 
when using generative AI to assist in developing 
complex software programs .  

Because of this need for human-AI collaboration, 
engineering teams that can optimally combine 
human expertise with AI assistance will achieve 
superior levels of performance and productivity. 
To help engineering teams do this, we conducted 
a comprehensive and multidisciplinary review 
of peer-reviewed research on the techniques, 
methods, and best practices for collaborating with 
generative AI models. This paper summarizes our 
findings.

2. Human-AI Collaboration
Broadly speaking, there are two ways that an engineer will collaborate with generative AI models to 
produce code (or other outputs, such as code comments or information about a specific package).

The first is via a method similar to the autocomplete functionality in predictive texting. In this method, the 
engineer does not necessarily need to provide any explicit instructions to the generative AI model for it to 
provide code suggestions. Instead, the generative AI model takes existing code that precedes or follows 
the line of code on which the engineer is currently working and uses this information to inform its code 
suggestions. An example of this kind of auto-complete generative AI tool is Github Copilot.

The second way an engineer will collaborate 
with generative AI to produce code is to provide 
direct instructions, known as prompts, to guide 
the generative AI model to provide an output 
that satisfies the user’s request. Interacting with 
generative AI in this way often requires an iterative 
approach. 

It starts with an initial prompt given by an engineer, 
which is followed by the AI’s response. Based on 
this response, the engineer may refine their prompt 
to guide the AI toward a more desirable output. For 
example, an engineer might start with a prompt 
like, “Create a Python function that loops through 
multiple lists of integers and outputs the mean of 
each list.” Then, the engineer may provide feedback 

to the AI on how the function could be improved 
by specifying certain conditions that must be 
met. This process continues until the engineer is 
satisfied with the code provided (sometimes, slight 
manual modifications may be required).

This type of interaction with generative AI is known 
as prompt engineering, which is “an emerging 
field that requires creativity and attention to detail. 
It involves selecting the right words, phrases, 
symbols, and formats that guide the model in 
generating high-quality and relevant texts” [8]. An 
example of this kind of interaction-based (or chat-
based) generative AI tool is OpenAI’s Advanced 
Data Analysis model (formerly referred to as Code 
Interpreter).



© Codility, Ltd. (2023) 03

Harnessing the Power of Generative AI: 
A Guide to Best Practices in Software Engineering

This type of interaction with generative AI is known as 
prompt engineering, which is “an emerging field that requires 
creativity and attention to detail. It involves selecting the right 
words, phrases, symbols, and formats that guide the model in 
generating high-quality and relevant texts” [8].

Understanding prompt engineering is important regardless of whether an engineer uses an auto-complete 
or an interaction-based generative AI tool. Prompt engineering is naturally a key process when using 
interaction-based tools; however, it is also built into auto-complete tools as the previously written code or 
comments essentially act as the prompt. 

Given the importance of prompt engineering in collaborating with generative AI, we now turn to an 
overview of the various types, methods, and best practices for prompt engineering.

Effective prompt engineering starts with understanding the capabilities and limitations of the specific 
generative AI model with which an engineer is working. With an ever-increasing number of generative 
AI models available, each one trained under different conditions of model architecture, parameters, and 
training data, engineers will need to be aware that each model is likely to respond to different prompts 
and different styles of prompts in different ways - what works well for one generative AI model will not 
necessarily work well for another model. Therefore, when collaborating with a new generative AI model, it 
is essential for engineers to quickly learn the methods and techniques that will lead to optimal outputs for 
that particular model. 

Information that is important to know for each 
model includes the format of inputs (e.g., Can you 
upload documents? Can special characters be 
used to store variables, for example “[variable 1]”?) 
and outputs (e.g., Which languages will it provide 
code for? Can it give an output in markdown 
format?) and the prompt types and methods to 
which it responds best (discussed in the following 
sections). 

For starters, when an engineer is working with a 
new generative AI model designed to write code, 
they should begin by building their understanding 
of the coding languages the generative AI has 
been trained on (and ideally, the percent of 
the training data that represents their chosen 
language), the types of and complexity of code it 
can successfully create, and the potential issues 
such as how often the generative AI model is likely 

to provide ineffective code or code with potential 
security issues [9]. Learning this information 
and more can be achieved by reviewing publicly 
available documents and data, discussing with 
colleagues, or via trial-and-error. A combination of 
these learning methods typically leads to the best 
results. 

2.1. Prompt Engineering
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Once an engineer is up-to-speed and effectively collaborating with the new generative AI model, they 
will need to stay informed regarding any changes to the model or version updates that may impact their 
method of collaboration. The pace of iteration and updates to generative AI models can be rapid, and 
engineers should monitor for version updates that, while bringing improved model sophistication and 
capabilities, may reduce model performance when using the engineer’s current methods. It is highly 
recommended that engineering teams keep track of changes to generative AI models and the associated 
implications for their working methods. 

While each generative AI model is unique, and engineers will need to understand these differences and 
adapt their interactions accordingly, there are some approaches and best practices that tend to generalize 
across models. These approaches and best practices, summarized below, cover not only what to include 
in a prompt but also how to generate the prompt and how to present the prompt to the generative AI 
model.

Prompt writing involves crafting prompts or commands to guide the AI’s content generation process. These 
prompts serve as the input the AI uses to produce its output, making them a critical aspect of how users 
interact with generative AI. The significance of prompt writing in the context of generative AI cannot be 
overstated, as how a prompt is formulated can significantly influence the AI’s output. For instance, providing 
more context in the prompt or asking the AI to think step by step can often lead to more detailed and 
accurate outputs. Conversely, vague or ambiguous prompts can lead to inadequate or incorrect outputs. 
Thus, the ability to craft effective prompts is a crucial skill to learn for engineers collaborating with 
generative AI.

Another consistent finding is that effective prompt writing requires clear instructions and specifications. 
Consider a scenario where a user asks a generative AI model to create a short story. An ineffective 
prompt would be, “Write a short story about a software engineer starting their first job” – this prompt 
is too vague and doesn’t provide enough context. On the other hand, a more effective prompt would be, 
“Write an inspiring short story of around 500 words about a person starting their first day at their first 
job as a software engineer after finishing college, focusing on the person’s feelings of excitement and 
possibilities for their future.” This prompt provides a more specific objective with clear context and 
constraints. One caveat to this general rule is that shorter and less specific prompts can work well in 
certain situations, for example when a model has been trained or fine-tuned for a particular use case (see 
Section 3.3).

Prompt writing is an emerging skill set, and much 
remains to be understood regarding what makes 
one prompt more effective than another. For 
this reason, prompt writing has been described 
as a trial-and-error process [10], and it is not 
always clear which aspects of a prompt will most 
influence a generative AI’s output. One critical 
insight that has been established is that humans 
and generative AI models process information 
differently and, therefore, a prompt that appears 
clear and concise to an engineer may not 
necessarily result in the intended output from a 
generative AI model. 

2.2. Writing Effective Prompts

Humans and generative AI 
models process information 
differently and, therefore, a 
prompt that appears clear 
and concise to an engineer 
may not necessarily result 
in the intended output from 
a generative AI model.  
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Prompt writing is not a one-size-fits-all process; instead, it includes a variety of techniques. These can be 
broadly categorized into six types: 

Zero-shot and few-shot prompting are the most 
basic. With zero-shot prompting, the user’s prompt 
contains task instructions for a generative AI model 
without specific examples regarding the output’s 
expected format. On the other hand, few-shot 
prompting includes a small set of examples that 
guide and constrain the generative AI’s outputs. 
Some studies have found that few-shot prompting 
enhances performance on tasks such as code 
summarization, especially when developers use 
samples from the same or similar projects [11]. 
However, other studies have found that few-shot 
prompting does not always enhance performance 
over zero-shot prompting [12]. 

Chain of Thought (CoT) and prompt ensembling 
are more advanced techniques. CoT prompting 
involves instructing the generative AI model to 
break down a problem into smaller sub-tasks, then 
provide a rationale behind decisions made for each 
sub-task before ultimately providing a final output. 

This prompting method has been found to increase 
performance across various tasks, including logical 
reasoning tasks [13]. 

The prompt ensembling technique borrows from 
the concept of ensemble models in machine 
learning, in which the outputs from multiple models 
are combined (often aggregated) to arrive at a more 
accurate final output. With prompt ensembling, the 
final output from a generative AI model results from 
multiple intermediate outputs, each with its unique 
prompt. Prompt ensembling aims to increase the 
accuracy and usability of model outputs by trying 
similar variants of an original prompt and combining 
relevant aspects of the multiple outputs of these 
prompt variants into a final output. This final output 
can seek to optimize for similarity or creativity in 
the intermediate outputs. Depending on the method 
used, prompt ensembling can increase the stability 
and reliability or the creativity and originality of the 
model outputs.

Currently, the most sophisticated prompt writing techniques include metaprompting and 
Tree of Thought (ToT) prompting.

Metaprompting is an innovative approach where the 
user asks the generative AI model to create its own 
prompts to complete a specified task [12]. These 
AI-generated prompts can then be evaluated against 

an objective [14], paving the way for self-learning 
systems. 

2.3. Multiple Techniques for Prompt Writing

1

4

2

5

3

6

Zero-shot 
prompting

Prompt 
ensembling

Few-shot 
prompting 

Metaprompting 

Chain of Thought 
(CoT) prompting

Tree of Thought 
(ToT) prompting
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For example, an engineer wants to write a prompt 
that will optimize the code review accuracy for a 
specific generative AI model for a specific project. 
Using the metaprompting technique, the engineer 
would write a prompt that instructs the generative 
AI model to output a prompt that would optimize 
its ability to review code, perhaps specifying some 
context about the type of code, the project, and 
what the model should be optimizing for. In this 
scenario, let’s say the engineer is optimizing for 
runtime. The engineer will then take the initial 
output from the generative AI model - the optimized 
code review prompt - and then use that prompt 
to instruct the model to conduct a code review 
(typically, but not necessarily, using the same 
model). After suggested revisions from the code 
review are made, the engineer stores the text from 
the “optimized code review prompt” and the runtime 
of the resulting code. 

After a few iterations of this process, the engineer 
can then provide the generative AI model with a 
series of paired prompt text and runtime values 
and instruct the model to use this information to 
generate another “optimized code review prompt” 
that seeks to minimize the associated runtime 
value. This process continues until the engineer is 
satisfied with the resulting performance of the code 
review prompt. Note how this specific example 

of metaprompting incorporates principles from 
supervised machine learning. 

Tree of Thought (ToT) prompting also utilizes a 
principle from machine learning, that of tree-based 
supervised learning. ToT extends upon the CoT 
prompting technique by instructing the generative AI 
model to consider multiple alternative approaches 
at each step (i.e., each sub-task) in the problem-
solving process. At each step, the model first 
describes the sub-task, provides numerous options 
for addressing the sub-task, and then selects one 
of these options before moving on to the next 
step, and the process repeats until it arrives at a 
solution. Critically, the ToT technique incorporates 
instructions for the model to backtrack to previous 
steps and to reconsider the available options if the 
originally (or subsequently) chosen problem-solving 
path turns out to be suboptimal [15]. This technique 
enables the consideration of multiple stepwise 
approaches to solving a specific problem. 

Zero-shot prompting:
providing a generative AI model 
task instructions without specific 
examples regarding the output’s 
expected format.

Prompt ensembling:
generating multiple outputs from 
a generative AI model by providing 
similar variants of an original prompt, 
and then instructing the generative 
AI model to consolidate information 
from the multiple outputs.

Metaprompting:
guiding a generative AI model 
through the process of creating its 
own prompts to complete a task.

Tree of Thought (ToT) prompting:
guiding a generative AI’s final output 
by instructing the model to break 
down a problem into smaller subtasks, 
to consider multiple solutions for each 
subtask, to make a decision on the 
best way to complete each subtask, 
and to backtrack to previous subtask 
decisions when necessary.

Few-shot prompting:
providing a generative AI model task 
instructions along with a small set of 
examples that guide and constrain 
the generative AI’s outputs.

Chain of Thought (CoT) prompting:
guiding a generative AI’s final output 
by instructing the model to break down 
a problem into smaller sub-tasks and 
to then make a decision on the best 
way to complete each subtask along 
with a rationale behind each decision.
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Let us return to our previous example of the engineer who wants to create an optimized code review 
prompt. Applying the ToT to this objective may involve the engineer instructing the model to do the 
following:

The unique capability of the ToT prompting method is that it can cover a larger area of the potential solution 
space by considering multiple possible decision paths. In principle, this technique could be repeated in 
a way that is conceptually similar to random forest models in machine learning. Doing so would involve 
instructing the generative AI to repeat the ToT method multiple times, with each “tree” having unique 
decision “branches,” and the final recommendations from each tree could be used as a shortlist of solutions 
from which the generative AI model can choose.

As described above, there are multiple techniques to prompt writing, and they vary significantly in their 
complexity and capabilities. The more basic prompt writing techniques often suffice for simple software 
engineering tasks, such as boilerplate code creation. On the other hand, more sophisticated techniques may 
be required for more advanced tasks or tasks that require a solution tailored to a particular use case (e.g., 
optimizing prompts for a specific project).

1.
Break down the task of 
creating an optimized prompt 
for code review into multiple 
sub-tasks, which might result 
in the AI outputting sub-tasks 
such as: “1. Ensure clarity of 
objective statement”, “2. List 
key considerations to achieve 
objective statement”, “3. Create 
a first draft of prompts that 
incorporate key considerations”, 
and “4. Review and revise first 
drafts”.

2.
List multiple solutions for the 
first sub-task and select one of 
those solutions (while providing 
a rationale for that decision), 
and then move on to the second 
sub-task and repeat the process 
until arriving at a recommended 
“optimized code review prompt” 
as the final output for that 
particular decision path.

3.
Review the output of this path and 
the decisions made at each sub-
task step and consider whether to 
explore alternate paths to improve 
the final output. 

In addition to different prompt writing techniques, various methods can be used to execute these techniques. 
These include the following [16] (in order of increasing sophistication):

1.	 Manual construction: Prompts are developed by humans via one of three methods: a) static 
prompts that are predefined by experts, b) template-based prompts that contain static text along 
with “fill in the blank” areas where users enter additional text, and c) free-form prompts that the user 
creates without any constraints.

2.	 Language model generation: Prompts are developed entirely or partially by a generative AI model to 
meet the objective specified in a user’s initial prompt.

2.4. Multiple Methods for Prompt Writing
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3.	 Retrieval-based prompt: Prompts include information from an external source, such as an 
organization’s internal documents or published academic literature.

4.	 Prompt learning: Prompts are developed iteratively via a supervised machine learning model to 
optimally satisfy a user’s predefined objective.

Notice that we included some of these prompting methods (e.g., language model generation and prompt 
learning) in the previous section as examples of how prompt writing techniques might be implemented. Each 
prompting method has distinct advantages and is suitable for different scenarios. 

In summary, effectively selecting from these different prompting techniques and methods based on the 
nature of the task is essential for harnessing the potential of generative AI. We now turn to some additional 
best practices for prompt engineering that supplement these techniques and methods.

While effective prompt writing often involves experimentation and iteration [17], generalizable best practices 
for effectively interacting with generative AI models have begun to surface from the scientific community. 
Highlights are summarized below.

2.5. Prompt Engineering Best Practices

1.	 Structure your prompt 
Underlying all prompt writing best practices 
is the core principle that interacting with 
generative AI models should be approached 
systematically. 
While we use natural language (i.e., human 
language) to communicate with generative AI, 
it is crucial to remember that these models do 
not interpret language the same way humans 
do [18]. Long and overly comprehensive 
descriptions can limit a generative AI’s ability 
to recall the most relevant information in a 
prompt when constructing its output, potentially reducing its performance [19]. In addition, current 
generative AI models have a limited amount of text that they can process in a prompt. When 
crafting prompts, users need to be mindful of this limit to ensure effective utilization of the model’s 
capabilities. As models advance, prompt size limits typically increase, so it’s best to consult official 
documentation or community resources for updated specifications. Generally speaking, prompts 
should be concise, clear, and provide an objective. Structured frameworks for writing effective 
prompts highlight these aspects and others, including Conciseness, Logic, Explicitness, Adaptability, 
and Reflectiveness (CLEAR) [20].

2.	 Include relevant context 
Research has found that carefully crafted prompts can substantially improve the code generation 
process [21]. 
For software engineers, this means writing prompts with rich programming context. For example, 
an engineer might include relevant classes, member variables, and functions in a prompt. Enclosing 
code snippets in triple quotes (‘’’) can help some generative AI models better comprehend code 
blocks within markdown syntax.

Prompt Engineering Best 
Practices:

1.	 Structure your prompt
2.	Include relevant context
3.	Experiment with 

positioning
4.	Document and iterate
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3.	 Experiment with positioning 
The position of a specific word or block of text within a prompt also significantly influences the 
output [22]. 
For example, researchers have found that performance is often higher when the most relevant and 
important information occurs at the beginning or end of a prompt [23]. Prompt position optimization 
should be considered during prompt creation and iteration. Optimizing the position of key text 
phrases within a prompt can be achieved systematically via the prompt learning method described 
earlier. However, this method can take time to develop, and less sophisticated prompt optimization 
requires user experimentation and iteration through a trial-and-error process. Remember that once a 
prompt is optimized for a particular generative AI model, it may need to be revised as new versions 
of the model are released. Also, the optimized prompt may not work well with other generative AI 
models. 

4.	 Document and iterate 
Engineering teams can benefit from developing an in-house database containing prompts and 
associated outputs. 
This database can serve multiple purposes: it can act as a reference for other users, provide a 
record for documentation purposes, and even contribute to the development of supervised machine 
learning models for prompt optimization [24] (including the optimization of prompt position, 
described in the preceding paragraph).

As the trajectory and ultimate level of sophistication of generative AI’s capabilities are actively being 
discussed and debated, a high degree of uncertainty remains. Some propose that as generative AI models 
evolve, they might reach a level where they can understand and fulfill a user’s intended objectives from 
rudimentary and relatively unstructured prompts [25]. If this level of sophisticated understanding is achieved, 
skill in prompt writing may become less critical. However, at the current time, prompt writing is an essential 
skill for effectively collaborating with generative AI tools. 

Having provided an overview of how to interact with - better yet, how to collaborate with - generative AI, we 
next turn to the question:

How do I know which generative AI models I should collaborate with?

3. Choosing a Generative AI Model
The number of generative AI models available to assist 
software engineering teams is rising sharply. Organizations 
such as OpenAI, Google, Microsoft, and Facebook are 
releasing increasingly sophisticated models at an increasing 
pace. In addition, an active open-source community is led 
by organizations such as Hugging Face. This platform 
provides access to a growing number of open-source 
machine-learning models and currently has over 19,000 
text-generation models available. With such an expansive 
landscape of generative AI models, engineering leaders face 
a crucial decision: Which generative AI models should the 
team use?

https://huggingface.co/
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The first step in answering this question is to consider whether commercial generative AI models such as 
Github Copilot or open-source models such as Alpaca are better suited to the needs of your team, specific 
projects, and the organization’s IT infrastructure and security requirements. 

Once the decision to use commercial or open-source models (or a combination of both) has been made, 
the next step is to review the specific models available. Presented below are some key factors to consider 
during this process.

A key benefit of commercial models is that they 
come equipped with advanced moderation filters, 
which help ensure the generated content is relevant 
and adherent to established benchmarks. The 
promise of scalability, fortified by robust APIs, 
makes them a good fit for large engineering teams. 
Commercial models also offer potential cost and 
resource savings as the vendor handles the model 
maintenance and continual improvement. 

However, these benefits come with caveats. 
Commercial models can be cost-prohibitive, 
especially for smaller entities or startups. Moreover, 
the structured environment, while beneficial in many 
respects, can sometimes stifle innovation, given 
the limited scope for customization. This rigidity 
can also lead to potential vendor lock-in, restricting 
future adaptability.

In contrast, open-source models provide cost-
effectiveness and malleability. The possibility 
of reduced cost combined with the freedom to 
adapt and modify these models makes them 
especially appealing for teams that value flexibility 
and innovation. The global community of open-
source developers continually refines these 
models, drawing from diverse perspectives and 
expertise. However, they come with their own set 
of challenges. Scalability, especially for larger 
applications, might become a performance 
bottleneck.

Additionally, while ‘open-source’ might suggest 
unrestricted use, understanding licensing nuances 
is paramount, especially for commercial endeavors.

To summarize, several critical factors influence 
the choice between commercial and open-
source models, including the organization’s size, 
industry regulations, financial resources, and IT 
infrastructure. Established corporations might 
favor the reliability and structured environment 
of commercial offerings, valuing the long-term 
support and maintenance they provide. In contrast, 
with their inherent agility and often constrained 
budgets, startups might lean toward open-source 
alternatives, valuing their adaptability and potential 
for fostering innovation. Central to this decision 
matrix is the team’s expertise. Teams with 
experience in generative AI model development 
and maintenance might thrive in the open-
source environment. In contrast, teams with less 
experience in this area might seek the predictability 
of commercial models.

3.1. Commercial Versus Open-Source Models

3.2. Factors to Consider When Reviewing Specific 
Models
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Commercial Models

When reviewing commercial models, it is important 
to evaluate the vendor’s position and trajectory 
compared to their competitors in the generative 
AI landscape. A good approach is to focus on 
vendors with a history of staying at the forefront 
of innovation while prioritizing safety and ethical 
standards in their models. In addition to information 
about the vendor’s generative AI models, it’s also 
useful to review information about their support 
services and general reputation among customers 
and the broader AI community. Another obvious 
and perhaps primary consideration is cost, which 
includes usage fees and other potential costs such 
as licensing flexibility, scaling costs, and any hidden 
fees. Integration capabilities—especially the model’s 
ability to meld seamlessly with existing systems—
are another critical factor to consider.

While commercial models typically come with more 
constraints, some vendors offer avenues for limited 
customization, a feature that can be invaluable 
for specific project requirements. Finally, model 
version control and access to archived models 
have become crucial considerations, as some 
research has found that model updates can reduce 
performance in certain domains [26].

Open-Source Models

The world of open-source models, replete with 
flexibility, brings its own set of considerations. 
A thriving community around a model not 
only indicates its reliability and future update 
prospects but also provides an abundance of 
user feedback. This feedback can be a potential 
source of information on the model’s performance 
across a wide range of scenarios. Models with 
comprehensive documentation, tutorials, and user-
generated content can ease the adoption process, 
which is important given the potentially steep 
learning curve associated with using open-source 
models. Official performance benchmarks, often 
available through community forums or third-party 
evaluations, can provide empirical insights into the 
model’s capabilities. 

Alongside these benefits, engineering leaders need 
to be vigilant about security considerations. Being 
aware of potential vulnerabilities and ensuring 
the model is safe for the intended application is 
essential. In addition, running and training an open-
source model can be costly and require significant 
computing power.

A final consideration is whether to fine-tune the 
selected model(s) to your specific use case. Fine-
tuning involves adapting a pre-trained model to 

3.3. Consider Fine-Tuning a Generative AI Model

Fine-tuning involves 
adapting a pre-trained 
model to cater to specific 
needs or domains, building 
upon the foundational 
capabilities it already 
possesses [27].

cater to specific needs or domains, building upon 
the foundational capabilities it already possesses 
[27].

For example, a software engineering team may fine-
tune an existing generative AI model by training it 
on their entire code base, resulting in a model that 
can suggest code in the language, frameworks, and 
style of the existing code base while also using the 
correct variable types and names. This process 
is typically used when the task requires specific 
knowledge or when the data used in pre-training 
differ significantly from the data the model will be 
generating [28].
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Fine-tuning has numerous benefits. It allows for task-specific improvements in model performance 
and enables the model to generate more relevant and accurate outputs. However, fine-tuning must be 
approached carefully and with expertise. One of the risks associated with fine-tuning is that the new model 
becomes too specialized on the training data, resulting in outputs that highly resemble code in the training 
data but may not fit the user’s current needs (a concept known as overfitting). 

When developing a fine-tuned generative AI model, you should pay consideration to selecting an appropriate 
base model and to the data on which this model will be trained (i.e., fine-tuned). In addition, the team’s 
expertise, both in terms of AI capabilities and domain knowledge, is essential to navigate the intricacies of 
fine-tuning successfully. Engineering leaders should also be mindful of potential risks, such as model drift, 
where the model’s overall performance begins to decline over time. Thus, the process doesn’t end with fine-
tuning. Continuous evaluation, benchmarked against clear metrics, ensures the model remains aligned with 
its objectives.

In summary:

The foundational decision between commercial models, known for their robustness and support, and open-
source modes, which provide flexibility and cost-effectiveness, will depend upon specific needs, resources, 
and operating environments. Engineering leaders should evaluate the trade-offs of each option and consider 
factors such as industry regulations, systems architecture, data security policies, expected performance 
enhancements, resource availability, and budget, among other factors discussed above. 

The choice of which generative AI tool(s) to invest in is a 
strategic decision that will shape the long-term success 
of engineering teams and broader risks and potential 
opportunities for the organization.

4. Developing AI Systems
So far, we have covered how to collaborate with 
generative AI and how to choose which generative 
AI models to collaborate with. In this final section, 
we briefly present some examples of more 
advanced and innovative approaches for leveraging 
generative AI to increase the performance and 
productivity of engineering teams by incorporating 
generative AI models into intelligent systems. 
These systems are designed to go beyond the raw 
capabilities of generative AI models to produce 
a harmonious interplay between AI and human 
experts while ensuring optimized, efficient, and 
safe outcomes.
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Engineering teams embarking on the journey of developing AI systems should prioritize three key concepts: 
effectiveness, efficiency, and safety. Central to this is understanding the concept of “generative variability” 
— unlike traditional algorithms that have deterministic outputs, generative AI model outputs are diverse and 
vary in quality, quantity, and character [29].

Harnessing the power of AI chain engineering can exponentially amplify the productivity of engineering 
teams. Such systems are emblematic of the potential power of fully optimized human-AI collaboration. By 
orchestrating the interaction between multiple generative AI models, each excelling in its own domain, a 
cohesive human-directed system can be developed to deliver superior outcomes.

Consider an integrated system in which generative AI models play distinct roles — a prompt refiner, a 
software engineer, and a product designer. As these models engage in iterative interactions, reminiscent 
of a brainstorming session among human experts, they collaboratively craft applications that are not only 
functional but finely tuned to user requirements [30]. 

One specific method that can be implemented within such a system is 
the Soft Prompt Encoder (SPE) [31], in which strategically interspersed 
prompts are placed within a multi-output generative AI pipeline to enhance 
the standardization and accuracy of outputs. A similar application is the 
Synthesizing, Executing, and Debugging (SED) [32] method. It generates draft 
code, rigorously tests it against predefined cases, and subsequently debugs and 
refines the code, all within an integrated and automated framework.

Undeniably a strength of generative AI models, this variability also demands vigilance. AI systems should 
be architected to accommodate and, when necessary, regulate this diversity, ensuring it aligns with the 
intended application. Engineers should consider this variability when designing systems that interact with or 
rely on generative AI outputs. 

Safety considerations are of utmost importance when developing AI systems. It has been said that 
prevention is better than cure, and this adage is particularly relevant with respect to AI. Designing against 
potential harm is not just a best practice but an ethical responsibility [29]. While transformative, the 
multifaceted capabilities of generative AI come with tremendous risks. Engineers should strive to preempt 
potential misuse, integrating safeguards that deter harmful or inappropriate content generation. And in 
scenarios where complete prevention of misuse is not possible, robust mechanisms to swiftly detect and 
rectify such deviations become essential.

4.1. Frameworks for Developing AI Systems

4.2. Optimizing System Intelligence with AI Chain 
Engineering

Unlike traditional algorithms that have deterministic outputs, 
generative AI model outputs are diverse and vary in quality, 
quantity, and character [29].



© Codility, Ltd. (2023) 14

Harnessing the Power of Generative AI: 
A Guide to Best Practices in Software Engineering

The successful and optimal utilization of generative 
AI systems relies significantly on intuitive and user-
centric interfaces. Systems should be developed to 
guide users through the intricacies of AI interactions 
seamlessly. Central to this user experience are 
design principles that facilitate prompt formulation, 
combination, application, and representation in user 
interfaces. An example is PromptIDE, an advanced 
Integrated Development Environment (IDE) which 
enables users to experiment with prompt variations, 
visualize prompt performance, and iteratively 
optimize prompts [33].

An AI system can be developed to continually learn from its interactions with humans and identify 
improvement opportunities based on these interactions. Human reviewers can then assess the viability 
and appropriateness of the recommended improvements and prioritize their execution. This synergy of 
autonomous learning and human oversight holds the potential for a harmonious blend of machine efficiency 
and human wisdom. This partnership is one where AI systems continuously evolve but always under human 
experts’ watchful and strategic guidance, ensuring a balance between innovation and responsibility.

Developing AI systems comprising multiple 
embedded generative AI models is the most 
sophisticated application of generative AI to date. 
While such systems are optional for engineering 
teams to reap the benefits of generative AI, it is still 
important for engineering leaders to be aware of 
such systems and what is possible in the new era of 
AI-assisted engineering.

4.3. Prioritizing User Interaction in AI Systems

4.4. Autonomous Learning Systems with Human 
Oversight

https://prompt.vizhub.ai
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Generative AI is not merely an evolution in software engineering; it’s a revolution. As we stand at the cusp 
of this transformative era, the software engineering landscape is poised for unprecedented change. The 
capabilities of generative AI models, from code generation to software design, promise efficiencies and 
innovations that were once the stuff of science fiction. Yet, with every revolution comes uncertainty.

At Codility, we understand the nuances, opportunities, and challenges that 
this generative AI revolution presents. We’re not just observers; we’re active 
participants dedicated to providing engineering leaders with the insights and 
tools they need to empower their teams to harness the power of generative 
AI. Our commitment is to ensure leaders are not left grappling in the dark as 
the software engineering domain undergoes this seismic shift. Instead, with 
Codility by their side, they are empowered, informed, and ready to lead their 
teams into the future.

A critical next step for engineering leaders is to understand the skills software engineers need in this new 
era of human-AI collaboration and, in turn, how to assess and develop these skills. From there, you will be 
well on your way to developing an industry-leading AI-powered engineering team.

Book a demo with us to check out Codility’s first-of-its-kind assessment of AI-assisted engineering 
skills. Current customers can contact their Codility representative to learn more about these new 
assessment offerings today.

Sincere thanks are extended to Ilya Sakharov whose valuable insights and contributions were instrumental 
in shaping this paper.

How will these models integrate with existing systems? What is 
the proper balance between human expertise and AI autonomy? 
And critically, how do engineering leaders navigate this new world 
of AI-assisted engineering?

Summary

https://www.codility.com/request-a-demo/
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