
Harnessing the Power of
Generative AI: A Guide to
Best Practices in Software
Engineering

© Codility, Ltd. (2023)

By James Meaden, Assessment Scientist, Taylor Sullivan, PhD and Neil Morelli, PhD

WHITE PAPER

Harnessing the Power
of Generative AI:
A Guide to Best Practices
in Software Engineering

TABLE OF CONTENTS

1. Understanding Generative AI

1.1. A Revolution in Software Engineering

2. Human-AI Collaboration

4. Developing AI Systems

Summary

References

3. Choosing a Generative AI Model

2.1. Prompt Engineering

4.1. Frameworks for Developing AI Systems

3.1. Commercial Versus Open-Source Models

2.2. Writing Effective Prompts

4.2. Optimizing System Intelligence with AI Chain Engineering

3.2. Factors to Consider When Reviewing Specific Models

3.3. Consider Fine-Tuning a Generative AI Model

Commercial Models

Open-Source Models

2.3. Multiple Techniques for Prompt Writing

4.3. Prioritizing User Interaction in AI Systems

2.4. Multiple Methods for Prompt Writing

4.4. Autonomous Learning Systems with Human Oversight

2.5. Prompt Engineering Best Practices

© Codility, Ltd. (2023)

01

01

02

03

04

05

07

08

09

10

10

11

11

11

12

13

13

14

14

15

16

James Meaden
Assessment Scientist

Taylor Sullivan
PhD

Neil Morelli
PhD

© Codility, Ltd. (2023) 01

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

1. Understanding Generative AI

1.1. A Revolution in Software Engineering

Artificial Intelligence (AI) is a broad category of technology systems that combine machine learning
and data processing to perform tasks that have typically required human intelligence, such as language
translation, speech recognition, and vision-based object identification. Generative AI refers to a subset
of these technology systems that utilize deep learning algorithms to identify and learn from important
patterns in large datasets.

However, generative AI is not just another tool; when used correctly it has the potential to significantly
boost the productivity of software engineering teams.

It is becoming clear that effectively harnessing generative AI will become a strategic imperative for
software engineering teams. Unfortunately, there is a lack of guidance for engineering team leaders
regarding how this technology can be used to increase their teams’ performance, productivity, and work
engagement. This paper addresses this gap by providing information on three important aspects of
generative AI in relation to software engineering: 1) how to collaborate with AI, 2) which AI to collaborate
with, and 3) how to build effective AI systems.

Generative AI has the potential to transform many industries as organizations
stand to benefit from its ability to automate information retrieval and
content generation. For example, in the education industry, librarians [1]
and academic researchers [2] can use generative AI for tasks ranging from
automated information cataloging to summarizing volumes of peer-reviewed
papers. In the medical sector, generative AI can assist in predicting protein
structures, which can accelerate drug discovery [3]. In the Architecture, (Civil)
Engineering, and Construction (AEC) industry, generative AI can automate
compliance checking by comparing building design specifications against
safety codes [4]. Unsurprisingly, generative AI is also poised to disrupt
the content creation industry by enabling the development of increasingly
sophisticated artwork such as poetry, music, and multiple forms of visual art,
and it will be able to do this at scale. These are just a few examples of how
generative AI could transform entire industries over the coming years.

We hope the information in this paper provides clarity and stimulates some ideas for using generative AI
to optimize the outputs of your engineering teams.

What distinguishes generative AI from other forms
of AI is its ability to apply these learned patterns to
create original and professional-level content, such
as short stories, photorealistic images, songs,
high-fidelity videos, and even code for computer
programs. Generative AI’s ability to create code
that satisfies a user’s requirements makes it a
powerful new tool in the software engineer’s tool
bag.

However, generative AI is
not just another tool; when
used correctly it has the
potential to significantly
boost the productivity of
software engineering teams.

© Codility, Ltd. (2023) 02

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

In the technology industry specifically, generative
AI is already having a strong impact and has
enormous potential to revolutionize long-
established practices and methods.

For example, AWS CodeWhisperer, powered
by generative AI, provides engineers with
code recommendations and has been found
to significantly multiply a software engineer’s
productivity, often by accelerating the initial stages
of code development [5]. Using tools like this
allows software engineers to spend less time on
routine code development tasks and more time
applying their expertise to solve more complex,
challenging, and engaging problems. This freeing
up of cognitive capacity and engineering expertise
is likely to lead to more innovative and optimized
software solutions.

While generative AI tools come with great potential
to increase the efficiency and productivity of
engineering teams, the ability to reap this potential

is limited to those who can collaborate with
them effectively. For example, while generative
AI models can successfully write code for fairly
simple tasks, they tend to struggle with more
complex coding tasks [6][7]. While this may change
as generative AI models become increasingly more
sophisticated, we strongly believe that human
engineering expertise will remain a crucial element
when using generative AI to assist in developing
complex software programs .

Because of this need for human-AI collaboration,
engineering teams that can optimally combine
human expertise with AI assistance will achieve
superior levels of performance and productivity.
To help engineering teams do this, we conducted
a comprehensive and multidisciplinary review
of peer-reviewed research on the techniques,
methods, and best practices for collaborating with
generative AI models. This paper summarizes our
findings.

2. Human-AI Collaboration
Broadly speaking, there are two ways that an engineer will collaborate with generative AI models to
produce code (or other outputs, such as code comments or information about a specific package).

The first is via a method similar to the autocomplete functionality in predictive texting. In this method, the
engineer does not necessarily need to provide any explicit instructions to the generative AI model for it to
provide code suggestions. Instead, the generative AI model takes existing code that precedes or follows
the line of code on which the engineer is currently working and uses this information to inform its code
suggestions. An example of this kind of auto-complete generative AI tool is Github Copilot.

The second way an engineer will collaborate
with generative AI to produce code is to provide
direct instructions, known as prompts, to guide
the generative AI model to provide an output
that satisfies the user’s request. Interacting with
generative AI in this way often requires an iterative
approach.

It starts with an initial prompt given by an engineer,
which is followed by the AI’s response. Based on
this response, the engineer may refine their prompt
to guide the AI toward a more desirable output. For
example, an engineer might start with a prompt
like, “Create a Python function that loops through
multiple lists of integers and outputs the mean of
each list.” Then, the engineer may provide feedback

to the AI on how the function could be improved
by specifying certain conditions that must be
met. This process continues until the engineer is
satisfied with the code provided (sometimes, slight
manual modifications may be required).

This type of interaction with generative AI is known
as prompt engineering, which is “an emerging
field that requires creativity and attention to detail.
It involves selecting the right words, phrases,
symbols, and formats that guide the model in
generating high-quality and relevant texts” [8]. An
example of this kind of interaction-based (or chat-
based) generative AI tool is OpenAI’s Advanced
Data Analysis model (formerly referred to as Code
Interpreter).

© Codility, Ltd. (2023) 03

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

This type of interaction with generative AI is known as
prompt engineering, which is “an emerging field that requires
creativity and attention to detail. It involves selecting the right
words, phrases, symbols, and formats that guide the model in
generating high-quality and relevant texts” [8].

Understanding prompt engineering is important regardless of whether an engineer uses an auto-complete
or an interaction-based generative AI tool. Prompt engineering is naturally a key process when using
interaction-based tools; however, it is also built into auto-complete tools as the previously written code or
comments essentially act as the prompt.

Given the importance of prompt engineering in collaborating with generative AI, we now turn to an
overview of the various types, methods, and best practices for prompt engineering.

Effective prompt engineering starts with understanding the capabilities and limitations of the specific
generative AI model with which an engineer is working. With an ever-increasing number of generative
AI models available, each one trained under different conditions of model architecture, parameters, and
training data, engineers will need to be aware that each model is likely to respond to different prompts
and different styles of prompts in different ways - what works well for one generative AI model will not
necessarily work well for another model. Therefore, when collaborating with a new generative AI model, it
is essential for engineers to quickly learn the methods and techniques that will lead to optimal outputs for
that particular model.

Information that is important to know for each
model includes the format of inputs (e.g., Can you
upload documents? Can special characters be
used to store variables, for example “[variable 1]”?)
and outputs (e.g., Which languages will it provide
code for? Can it give an output in markdown
format?) and the prompt types and methods to
which it responds best (discussed in the following
sections).

For starters, when an engineer is working with a
new generative AI model designed to write code,
they should begin by building their understanding
of the coding languages the generative AI has
been trained on (and ideally, the percent of
the training data that represents their chosen
language), the types of and complexity of code it
can successfully create, and the potential issues
such as how often the generative AI model is likely

to provide ineffective code or code with potential
security issues [9]. Learning this information
and more can be achieved by reviewing publicly
available documents and data, discussing with
colleagues, or via trial-and-error. A combination of
these learning methods typically leads to the best
results.

2.1. Prompt Engineering

© Codility, Ltd. (2023) 04

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

Once an engineer is up-to-speed and effectively collaborating with the new generative AI model, they
will need to stay informed regarding any changes to the model or version updates that may impact their
method of collaboration. The pace of iteration and updates to generative AI models can be rapid, and
engineers should monitor for version updates that, while bringing improved model sophistication and
capabilities, may reduce model performance when using the engineer’s current methods. It is highly
recommended that engineering teams keep track of changes to generative AI models and the associated
implications for their working methods.

While each generative AI model is unique, and engineers will need to understand these differences and
adapt their interactions accordingly, there are some approaches and best practices that tend to generalize
across models. These approaches and best practices, summarized below, cover not only what to include
in a prompt but also how to generate the prompt and how to present the prompt to the generative AI
model.

Prompt writing involves crafting prompts or commands to guide the AI’s content generation process. These
prompts serve as the input the AI uses to produce its output, making them a critical aspect of how users
interact with generative AI. The significance of prompt writing in the context of generative AI cannot be
overstated, as how a prompt is formulated can significantly influence the AI’s output. For instance, providing
more context in the prompt or asking the AI to think step by step can often lead to more detailed and
accurate outputs. Conversely, vague or ambiguous prompts can lead to inadequate or incorrect outputs.
Thus, the ability to craft effective prompts is a crucial skill to learn for engineers collaborating with
generative AI.

Another consistent finding is that effective prompt writing requires clear instructions and specifications.
Consider a scenario where a user asks a generative AI model to create a short story. An ineffective
prompt would be, “Write a short story about a software engineer starting their first job” – this prompt
is too vague and doesn’t provide enough context. On the other hand, a more effective prompt would be,
“Write an inspiring short story of around 500 words about a person starting their first day at their first
job as a software engineer after finishing college, focusing on the person’s feelings of excitement and
possibilities for their future.” This prompt provides a more specific objective with clear context and
constraints. One caveat to this general rule is that shorter and less specific prompts can work well in
certain situations, for example when a model has been trained or fine-tuned for a particular use case (see
Section 3.3).

Prompt writing is an emerging skill set, and much
remains to be understood regarding what makes
one prompt more effective than another. For
this reason, prompt writing has been described
as a trial-and-error process [10], and it is not
always clear which aspects of a prompt will most
influence a generative AI’s output. One critical
insight that has been established is that humans
and generative AI models process information
differently and, therefore, a prompt that appears
clear and concise to an engineer may not
necessarily result in the intended output from a
generative AI model.

2.2. Writing Effective Prompts

Humans and generative AI
models process information
differently and, therefore, a
prompt that appears clear
and concise to an engineer
may not necessarily result
in the intended output from
a generative AI model.

© Codility, Ltd. (2023) 05

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

Prompt writing is not a one-size-fits-all process; instead, it includes a variety of techniques. These can be
broadly categorized into six types:

Zero-shot and few-shot prompting are the most
basic. With zero-shot prompting, the user’s prompt
contains task instructions for a generative AI model
without specific examples regarding the output’s
expected format. On the other hand, few-shot
prompting includes a small set of examples that
guide and constrain the generative AI’s outputs.
Some studies have found that few-shot prompting
enhances performance on tasks such as code
summarization, especially when developers use
samples from the same or similar projects [11].
However, other studies have found that few-shot
prompting does not always enhance performance
over zero-shot prompting [12].

Chain of Thought (CoT) and prompt ensembling
are more advanced techniques. CoT prompting
involves instructing the generative AI model to
break down a problem into smaller sub-tasks, then
provide a rationale behind decisions made for each
sub-task before ultimately providing a final output.

This prompting method has been found to increase
performance across various tasks, including logical
reasoning tasks [13].

The prompt ensembling technique borrows from
the concept of ensemble models in machine
learning, in which the outputs from multiple models
are combined (often aggregated) to arrive at a more
accurate final output. With prompt ensembling, the
final output from a generative AI model results from
multiple intermediate outputs, each with its unique
prompt. Prompt ensembling aims to increase the
accuracy and usability of model outputs by trying
similar variants of an original prompt and combining
relevant aspects of the multiple outputs of these
prompt variants into a final output. This final output
can seek to optimize for similarity or creativity in
the intermediate outputs. Depending on the method
used, prompt ensembling can increase the stability
and reliability or the creativity and originality of the
model outputs.

Currently, the most sophisticated prompt writing techniques include metaprompting and
Tree of Thought (ToT) prompting.

Metaprompting is an innovative approach where the
user asks the generative AI model to create its own
prompts to complete a specified task [12]. These
AI-generated prompts can then be evaluated against

an objective [14], paving the way for self-learning
systems.

2.3. Multiple Techniques for Prompt Writing

1

4

2

5

3

6

Zero-shot
prompting

Prompt
ensembling

Few-shot
prompting

Metaprompting

Chain of Thought
(CoT) prompting

Tree of Thought
(ToT) prompting

© Codility, Ltd. (2023) 06

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

For example, an engineer wants to write a prompt
that will optimize the code review accuracy for a
specific generative AI model for a specific project.
Using the metaprompting technique, the engineer
would write a prompt that instructs the generative
AI model to output a prompt that would optimize
its ability to review code, perhaps specifying some
context about the type of code, the project, and
what the model should be optimizing for. In this
scenario, let’s say the engineer is optimizing for
runtime. The engineer will then take the initial
output from the generative AI model - the optimized
code review prompt - and then use that prompt
to instruct the model to conduct a code review
(typically, but not necessarily, using the same
model). After suggested revisions from the code
review are made, the engineer stores the text from
the “optimized code review prompt” and the runtime
of the resulting code.

After a few iterations of this process, the engineer
can then provide the generative AI model with a
series of paired prompt text and runtime values
and instruct the model to use this information to
generate another “optimized code review prompt”
that seeks to minimize the associated runtime
value. This process continues until the engineer is
satisfied with the resulting performance of the code
review prompt. Note how this specific example

of metaprompting incorporates principles from
supervised machine learning.

Tree of Thought (ToT) prompting also utilizes a
principle from machine learning, that of tree-based
supervised learning. ToT extends upon the CoT
prompting technique by instructing the generative AI
model to consider multiple alternative approaches
at each step (i.e., each sub-task) in the problem-
solving process. At each step, the model first
describes the sub-task, provides numerous options
for addressing the sub-task, and then selects one
of these options before moving on to the next
step, and the process repeats until it arrives at a
solution. Critically, the ToT technique incorporates
instructions for the model to backtrack to previous
steps and to reconsider the available options if the
originally (or subsequently) chosen problem-solving
path turns out to be suboptimal [15]. This technique
enables the consideration of multiple stepwise
approaches to solving a specific problem.

Zero-shot prompting:
providing a generative AI model
task instructions without specific
examples regarding the output’s
expected format.

Prompt ensembling:
generating multiple outputs from
a generative AI model by providing
similar variants of an original prompt,
and then instructing the generative
AI model to consolidate information
from the multiple outputs.

Metaprompting:
guiding a generative AI model
through the process of creating its
own prompts to complete a task.

Tree of Thought (ToT) prompting:
guiding a generative AI’s final output
by instructing the model to break
down a problem into smaller subtasks,
to consider multiple solutions for each
subtask, to make a decision on the
best way to complete each subtask,
and to backtrack to previous subtask
decisions when necessary.

Few-shot prompting:
providing a generative AI model task
instructions along with a small set of
examples that guide and constrain
the generative AI’s outputs.

Chain of Thought (CoT) prompting:
guiding a generative AI’s final output
by instructing the model to break down
a problem into smaller sub-tasks and
to then make a decision on the best
way to complete each subtask along
with a rationale behind each decision.

© Codility, Ltd. (2023) 07

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

Let us return to our previous example of the engineer who wants to create an optimized code review
prompt. Applying the ToT to this objective may involve the engineer instructing the model to do the
following:

The unique capability of the ToT prompting method is that it can cover a larger area of the potential solution
space by considering multiple possible decision paths. In principle, this technique could be repeated in
a way that is conceptually similar to random forest models in machine learning. Doing so would involve
instructing the generative AI to repeat the ToT method multiple times, with each “tree” having unique
decision “branches,” and the final recommendations from each tree could be used as a shortlist of solutions
from which the generative AI model can choose.

As described above, there are multiple techniques to prompt writing, and they vary significantly in their
complexity and capabilities. The more basic prompt writing techniques often suffice for simple software
engineering tasks, such as boilerplate code creation. On the other hand, more sophisticated techniques may
be required for more advanced tasks or tasks that require a solution tailored to a particular use case (e.g.,
optimizing prompts for a specific project).

1.
Break down the task of
creating an optimized prompt
for code review into multiple
sub-tasks, which might result
in the AI outputting sub-tasks
such as: “1. Ensure clarity of
objective statement”, “2. List
key considerations to achieve
objective statement”, “3. Create
a first draft of prompts that
incorporate key considerations”,
and “4. Review and revise first
drafts”.

2.
List multiple solutions for the
first sub-task and select one of
those solutions (while providing
a rationale for that decision),
and then move on to the second
sub-task and repeat the process
until arriving at a recommended
“optimized code review prompt”
as the final output for that
particular decision path.

3.
Review the output of this path and
the decisions made at each sub-
task step and consider whether to
explore alternate paths to improve
the final output.

In addition to different prompt writing techniques, various methods can be used to execute these techniques.
These include the following [16] (in order of increasing sophistication):

1.	 Manual construction: Prompts are developed by humans via one of three methods: a) static
prompts that are predefined by experts, b) template-based prompts that contain static text along
with “fill in the blank” areas where users enter additional text, and c) free-form prompts that the user
creates without any constraints.

2.	 Language model generation: Prompts are developed entirely or partially by a generative AI model to
meet the objective specified in a user’s initial prompt.

2.4. Multiple Methods for Prompt Writing

© Codility, Ltd. (2023) 08

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

3.	 Retrieval-based prompt: Prompts include information from an external source, such as an
organization’s internal documents or published academic literature.

4.	 Prompt learning: Prompts are developed iteratively via a supervised machine learning model to
optimally satisfy a user’s predefined objective.

Notice that we included some of these prompting methods (e.g., language model generation and prompt
learning) in the previous section as examples of how prompt writing techniques might be implemented. Each
prompting method has distinct advantages and is suitable for different scenarios.

In summary, effectively selecting from these different prompting techniques and methods based on the
nature of the task is essential for harnessing the potential of generative AI. We now turn to some additional
best practices for prompt engineering that supplement these techniques and methods.

While effective prompt writing often involves experimentation and iteration [17], generalizable best practices
for effectively interacting with generative AI models have begun to surface from the scientific community.
Highlights are summarized below.

2.5. Prompt Engineering Best Practices

1.	 Structure your prompt
Underlying all prompt writing best practices
is the core principle that interacting with
generative AI models should be approached
systematically.
While we use natural language (i.e., human
language) to communicate with generative AI,
it is crucial to remember that these models do
not interpret language the same way humans
do [18]. Long and overly comprehensive
descriptions can limit a generative AI’s ability
to recall the most relevant information in a
prompt when constructing its output, potentially reducing its performance [19]. In addition, current
generative AI models have a limited amount of text that they can process in a prompt. When
crafting prompts, users need to be mindful of this limit to ensure effective utilization of the model’s
capabilities. As models advance, prompt size limits typically increase, so it’s best to consult official
documentation or community resources for updated specifications. Generally speaking, prompts
should be concise, clear, and provide an objective. Structured frameworks for writing effective
prompts highlight these aspects and others, including Conciseness, Logic, Explicitness, Adaptability,
and Reflectiveness (CLEAR) [20].

2.	 Include relevant context
Research has found that carefully crafted prompts can substantially improve the code generation
process [21].
For software engineers, this means writing prompts with rich programming context. For example,
an engineer might include relevant classes, member variables, and functions in a prompt. Enclosing
code snippets in triple quotes (‘’’) can help some generative AI models better comprehend code
blocks within markdown syntax.

Prompt Engineering Best
Practices:

1.	 Structure your prompt
2.	Include relevant context
3.	Experiment with

positioning
4.	Document and iterate

© Codility, Ltd. (2023) 09

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

3.	 Experiment with positioning
The position of a specific word or block of text within a prompt also significantly influences the
output [22].
For example, researchers have found that performance is often higher when the most relevant and
important information occurs at the beginning or end of a prompt [23]. Prompt position optimization
should be considered during prompt creation and iteration. Optimizing the position of key text
phrases within a prompt can be achieved systematically via the prompt learning method described
earlier. However, this method can take time to develop, and less sophisticated prompt optimization
requires user experimentation and iteration through a trial-and-error process. Remember that once a
prompt is optimized for a particular generative AI model, it may need to be revised as new versions
of the model are released. Also, the optimized prompt may not work well with other generative AI
models.

4.	 Document and iterate
Engineering teams can benefit from developing an in-house database containing prompts and
associated outputs.
This database can serve multiple purposes: it can act as a reference for other users, provide a
record for documentation purposes, and even contribute to the development of supervised machine
learning models for prompt optimization [24] (including the optimization of prompt position,
described in the preceding paragraph).

As the trajectory and ultimate level of sophistication of generative AI’s capabilities are actively being
discussed and debated, a high degree of uncertainty remains. Some propose that as generative AI models
evolve, they might reach a level where they can understand and fulfill a user’s intended objectives from
rudimentary and relatively unstructured prompts [25]. If this level of sophisticated understanding is achieved,
skill in prompt writing may become less critical. However, at the current time, prompt writing is an essential
skill for effectively collaborating with generative AI tools.

Having provided an overview of how to interact with - better yet, how to collaborate with - generative AI, we
next turn to the question:

How do I know which generative AI models I should collaborate with?

3. Choosing a Generative AI Model
The number of generative AI models available to assist
software engineering teams is rising sharply. Organizations
such as OpenAI, Google, Microsoft, and Facebook are
releasing increasingly sophisticated models at an increasing
pace. In addition, an active open-source community is led
by organizations such as Hugging Face. This platform
provides access to a growing number of open-source
machine-learning models and currently has over 19,000
text-generation models available. With such an expansive
landscape of generative AI models, engineering leaders face
a crucial decision: Which generative AI models should the
team use?

https://huggingface.co/

© Codility, Ltd. (2023) 10

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

The first step in answering this question is to consider whether commercial generative AI models such as
Github Copilot or open-source models such as Alpaca are better suited to the needs of your team, specific
projects, and the organization’s IT infrastructure and security requirements.

Once the decision to use commercial or open-source models (or a combination of both) has been made,
the next step is to review the specific models available. Presented below are some key factors to consider
during this process.

A key benefit of commercial models is that they
come equipped with advanced moderation filters,
which help ensure the generated content is relevant
and adherent to established benchmarks. The
promise of scalability, fortified by robust APIs,
makes them a good fit for large engineering teams.
Commercial models also offer potential cost and
resource savings as the vendor handles the model
maintenance and continual improvement.

However, these benefits come with caveats.
Commercial models can be cost-prohibitive,
especially for smaller entities or startups. Moreover,
the structured environment, while beneficial in many
respects, can sometimes stifle innovation, given
the limited scope for customization. This rigidity
can also lead to potential vendor lock-in, restricting
future adaptability.

In contrast, open-source models provide cost-
effectiveness and malleability. The possibility
of reduced cost combined with the freedom to
adapt and modify these models makes them
especially appealing for teams that value flexibility
and innovation. The global community of open-
source developers continually refines these
models, drawing from diverse perspectives and
expertise. However, they come with their own set
of challenges. Scalability, especially for larger
applications, might become a performance
bottleneck.

Additionally, while ‘open-source’ might suggest
unrestricted use, understanding licensing nuances
is paramount, especially for commercial endeavors.

To summarize, several critical factors influence
the choice between commercial and open-
source models, including the organization’s size,
industry regulations, financial resources, and IT
infrastructure. Established corporations might
favor the reliability and structured environment
of commercial offerings, valuing the long-term
support and maintenance they provide. In contrast,
with their inherent agility and often constrained
budgets, startups might lean toward open-source
alternatives, valuing their adaptability and potential
for fostering innovation. Central to this decision
matrix is the team’s expertise. Teams with
experience in generative AI model development
and maintenance might thrive in the open-
source environment. In contrast, teams with less
experience in this area might seek the predictability
of commercial models.

3.1. Commercial Versus Open-Source Models

3.2. Factors to Consider When Reviewing Specific
Models

© Codility, Ltd. (2023) 11

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

Commercial Models

When reviewing commercial models, it is important
to evaluate the vendor’s position and trajectory
compared to their competitors in the generative
AI landscape. A good approach is to focus on
vendors with a history of staying at the forefront
of innovation while prioritizing safety and ethical
standards in their models. In addition to information
about the vendor’s generative AI models, it’s also
useful to review information about their support
services and general reputation among customers
and the broader AI community. Another obvious
and perhaps primary consideration is cost, which
includes usage fees and other potential costs such
as licensing flexibility, scaling costs, and any hidden
fees. Integration capabilities—especially the model’s
ability to meld seamlessly with existing systems—
are another critical factor to consider.

While commercial models typically come with more
constraints, some vendors offer avenues for limited
customization, a feature that can be invaluable
for specific project requirements. Finally, model
version control and access to archived models
have become crucial considerations, as some
research has found that model updates can reduce
performance in certain domains [26].

Open-Source Models

The world of open-source models, replete with
flexibility, brings its own set of considerations.
A thriving community around a model not
only indicates its reliability and future update
prospects but also provides an abundance of
user feedback. This feedback can be a potential
source of information on the model’s performance
across a wide range of scenarios. Models with
comprehensive documentation, tutorials, and user-
generated content can ease the adoption process,
which is important given the potentially steep
learning curve associated with using open-source
models. Official performance benchmarks, often
available through community forums or third-party
evaluations, can provide empirical insights into the
model’s capabilities.

Alongside these benefits, engineering leaders need
to be vigilant about security considerations. Being
aware of potential vulnerabilities and ensuring
the model is safe for the intended application is
essential. In addition, running and training an open-
source model can be costly and require significant
computing power.

A final consideration is whether to fine-tune the
selected model(s) to your specific use case. Fine-
tuning involves adapting a pre-trained model to

3.3. Consider Fine-Tuning a Generative AI Model

Fine-tuning involves
adapting a pre-trained
model to cater to specific
needs or domains, building
upon the foundational
capabilities it already
possesses [27].

cater to specific needs or domains, building upon
the foundational capabilities it already possesses
[27].

For example, a software engineering team may fine-
tune an existing generative AI model by training it
on their entire code base, resulting in a model that
can suggest code in the language, frameworks, and
style of the existing code base while also using the
correct variable types and names. This process
is typically used when the task requires specific
knowledge or when the data used in pre-training
differ significantly from the data the model will be
generating [28].

© Codility, Ltd. (2023) 12

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

Fine-tuning has numerous benefits. It allows for task-specific improvements in model performance
and enables the model to generate more relevant and accurate outputs. However, fine-tuning must be
approached carefully and with expertise. One of the risks associated with fine-tuning is that the new model
becomes too specialized on the training data, resulting in outputs that highly resemble code in the training
data but may not fit the user’s current needs (a concept known as overfitting).

When developing a fine-tuned generative AI model, you should pay consideration to selecting an appropriate
base model and to the data on which this model will be trained (i.e., fine-tuned). In addition, the team’s
expertise, both in terms of AI capabilities and domain knowledge, is essential to navigate the intricacies of
fine-tuning successfully. Engineering leaders should also be mindful of potential risks, such as model drift,
where the model’s overall performance begins to decline over time. Thus, the process doesn’t end with fine-
tuning. Continuous evaluation, benchmarked against clear metrics, ensures the model remains aligned with
its objectives.

In summary:

The foundational decision between commercial models, known for their robustness and support, and open-
source modes, which provide flexibility and cost-effectiveness, will depend upon specific needs, resources,
and operating environments. Engineering leaders should evaluate the trade-offs of each option and consider
factors such as industry regulations, systems architecture, data security policies, expected performance
enhancements, resource availability, and budget, among other factors discussed above.

The choice of which generative AI tool(s) to invest in is a
strategic decision that will shape the long-term success
of engineering teams and broader risks and potential
opportunities for the organization.

4. Developing AI Systems
So far, we have covered how to collaborate with
generative AI and how to choose which generative
AI models to collaborate with. In this final section,
we briefly present some examples of more
advanced and innovative approaches for leveraging
generative AI to increase the performance and
productivity of engineering teams by incorporating
generative AI models into intelligent systems.
These systems are designed to go beyond the raw
capabilities of generative AI models to produce
a harmonious interplay between AI and human
experts while ensuring optimized, efficient, and
safe outcomes.

© Codility, Ltd. (2023) 13

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

Engineering teams embarking on the journey of developing AI systems should prioritize three key concepts:
effectiveness, efficiency, and safety. Central to this is understanding the concept of “generative variability”
— unlike traditional algorithms that have deterministic outputs, generative AI model outputs are diverse and
vary in quality, quantity, and character [29].

Harnessing the power of AI chain engineering can exponentially amplify the productivity of engineering
teams. Such systems are emblematic of the potential power of fully optimized human-AI collaboration. By
orchestrating the interaction between multiple generative AI models, each excelling in its own domain, a
cohesive human-directed system can be developed to deliver superior outcomes.

Consider an integrated system in which generative AI models play distinct roles — a prompt refiner, a
software engineer, and a product designer. As these models engage in iterative interactions, reminiscent
of a brainstorming session among human experts, they collaboratively craft applications that are not only
functional but finely tuned to user requirements [30].

One specific method that can be implemented within such a system is
the Soft Prompt Encoder (SPE) [31], in which strategically interspersed
prompts are placed within a multi-output generative AI pipeline to enhance
the standardization and accuracy of outputs. A similar application is the
Synthesizing, Executing, and Debugging (SED) [32] method. It generates draft
code, rigorously tests it against predefined cases, and subsequently debugs and
refines the code, all within an integrated and automated framework.

Undeniably a strength of generative AI models, this variability also demands vigilance. AI systems should
be architected to accommodate and, when necessary, regulate this diversity, ensuring it aligns with the
intended application. Engineers should consider this variability when designing systems that interact with or
rely on generative AI outputs.

Safety considerations are of utmost importance when developing AI systems. It has been said that
prevention is better than cure, and this adage is particularly relevant with respect to AI. Designing against
potential harm is not just a best practice but an ethical responsibility [29]. While transformative, the
multifaceted capabilities of generative AI come with tremendous risks. Engineers should strive to preempt
potential misuse, integrating safeguards that deter harmful or inappropriate content generation. And in
scenarios where complete prevention of misuse is not possible, robust mechanisms to swiftly detect and
rectify such deviations become essential.

4.1. Frameworks for Developing AI Systems

4.2. Optimizing System Intelligence with AI Chain
Engineering

Unlike traditional algorithms that have deterministic outputs,
generative AI model outputs are diverse and vary in quality,
quantity, and character [29].

© Codility, Ltd. (2023) 14

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

The successful and optimal utilization of generative
AI systems relies significantly on intuitive and user-
centric interfaces. Systems should be developed to
guide users through the intricacies of AI interactions
seamlessly. Central to this user experience are
design principles that facilitate prompt formulation,
combination, application, and representation in user
interfaces. An example is PromptIDE, an advanced
Integrated Development Environment (IDE) which
enables users to experiment with prompt variations,
visualize prompt performance, and iteratively
optimize prompts [33].

An AI system can be developed to continually learn from its interactions with humans and identify
improvement opportunities based on these interactions. Human reviewers can then assess the viability
and appropriateness of the recommended improvements and prioritize their execution. This synergy of
autonomous learning and human oversight holds the potential for a harmonious blend of machine efficiency
and human wisdom. This partnership is one where AI systems continuously evolve but always under human
experts’ watchful and strategic guidance, ensuring a balance between innovation and responsibility.

Developing AI systems comprising multiple
embedded generative AI models is the most
sophisticated application of generative AI to date.
While such systems are optional for engineering
teams to reap the benefits of generative AI, it is still
important for engineering leaders to be aware of
such systems and what is possible in the new era of
AI-assisted engineering.

4.3. Prioritizing User Interaction in AI Systems

4.4. Autonomous Learning Systems with Human
Oversight

https://prompt.vizhub.ai

© Codility, Ltd. (2023) 15

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

Generative AI is not merely an evolution in software engineering; it’s a revolution. As we stand at the cusp
of this transformative era, the software engineering landscape is poised for unprecedented change. The
capabilities of generative AI models, from code generation to software design, promise efficiencies and
innovations that were once the stuff of science fiction. Yet, with every revolution comes uncertainty.

At Codility, we understand the nuances, opportunities, and challenges that
this generative AI revolution presents. We’re not just observers; we’re active
participants dedicated to providing engineering leaders with the insights and
tools they need to empower their teams to harness the power of generative
AI. Our commitment is to ensure leaders are not left grappling in the dark as
the software engineering domain undergoes this seismic shift. Instead, with
Codility by their side, they are empowered, informed, and ready to lead their
teams into the future.

A critical next step for engineering leaders is to understand the skills software engineers need in this new
era of human-AI collaboration and, in turn, how to assess and develop these skills. From there, you will be
well on your way to developing an industry-leading AI-powered engineering team.

Book a demo with us to check out Codility’s first-of-its-kind assessment of AI-assisted engineering
skills. Current customers can contact their Codility representative to learn more about these new
assessment offerings today.

Sincere thanks are extended to Ilya Sakharov whose valuable insights and contributions were instrumental
in shaping this paper.

How will these models integrate with existing systems? What is
the proper balance between human expertise and AI autonomy?
And critically, how do engineering leaders navigate this new world
of AI-assisted engineering?

Summary

https://www.codility.com/request-a-demo/

© Codility, Ltd. (2023) 16

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

[1] Lo, L. S. (2023). The Art and Science of Prompt Engineering: A New Literacy in the Information Age. Internet Reference Services
Quarterly, 1-8.

[2] Giray, L. (2023). Prompt Engineering with ChatGPT: A Guide for Academic Writers. Annals of Biomedical Engineering, 1-5.

[3] Lee, J. S., Kim, J., & Kim, P. M. (2023). Score-based generative modeling for de novo protein design. Nature Computational Science,
1-11.

[4] Liu, X., Li, H., & Zhu, X. (2023). A GPT-based method of Automated Compliance Checking through prompt engineering.

[5] Hicks, L. (2023). Louder than a Whisper: Praise for AI Coding Assistants That Doesn’t Overpromise. Medium.
https://medium.com/slalom-technology/louder-than-a-whisper-praise-for-ai-coding-assistants-that-doesnt-overpromise-9912c9e61db1

[6] Ekedahl, H., & Helander, V. (2023). Can artificial intelligence replace humans in programming?

[7] Nikolaidis, N., Flamos, K., Feitosa, D., Chatzigeorgiou, A., & Ampatzoglou, A. The End of an Era: Can Ai Subsume Software Developers?
Evaluating Chatgpt and Copilot Capabilities Using Leetcode Problems. Evaluating Chatgpt and Copilot Capabilities Using Leetcode
Problems.

[8] Maeda, J., & Bolaños, M. (2023). What are Prompts? Microsoft.
https://learn.microsoft.com/en-us/semantic-kernel/prompt-engineering/

[9] Ramel, D. (2021). GitHub Copilot Security Study: ‘Developers Should Remain Awake’ in View of 40% Bad Code Rate.
visualstudiomagazine.
https://visualstudiomagazine.com/articles/2021/08/26/github-copilot-security.aspx

[10] Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to prompt? Opportunities and challenges of zero-and few-shot
learning for human-AI interaction in creative applications of generative models. arXiv preprint arXiv:2209.01390.

[11] Ahmed, T., Pai, K. S., Devanbu, P., & Barr, E. T. (2023). Improving Few-Shot Prompts with Relevant Static Analysis Products. arXiv
preprint arXiv:2304.06815.

[12] Reynolds, L., & McDonell, K. (2021, May). Prompt programming for large language models: Beyond the few-shot paradigm. In Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1-7).

[13] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Quoc, V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems, 35, 24824-24837.

[14] Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H., & Ba, J. (2022). Large language models are human-level prompt
engineers. arXiv preprint arXiv:2211.01910.

[15] Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y., & Narasimhan, K. (2023). Tree of thoughts: Deliberate problem solving with
large language models. arXiv preprint arXiv:2305.10601.

[16] Liu, C., Bao, X., Zhang, H., Zhang, N., Hu, H., Zhang, X., & Yan, M. (2023). Improving ChatGPT Prompt for Code Generation. arXiv
preprint arXiv:2305.08360.

[17] Dang, H., Mecke, L., Lehmann, F., Goller, S., & Buschek, D. (2022). How to prompt? Opportunities and challenges of zero-and few-shot
learning for human-AI interaction in creative applications of generative models. arXiv preprint arXiv:2209.01390.

[18] Zamfirescu-Pereira, J. D., Wong, R. Y., Hartmann, B., & Yang, Q. (2023, April). Why Johnny can’t prompt: how non-AI experts try (and
fail) to design LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-21).

[19] Tian, H., Lu, W., Li, T. O., Tang, X., Cheung, S. C., Klein, J., & Bissyandé, T. F. (2023). Is ChatGPT the Ultimate Programming Assistant--
How far is it?. arXiv preprint arXiv:2304.11938.

[20] Lo, L. S. (2023). The Art and Science of Prompt Engineering: A New Literacy in the Information Age. Internet Reference Services
Quarterly, 1-8.

[21] Liu, C., Bao, X., Zhang, H., Zhang, N., Hu, H., Zhang, X., & Yan, M. (2023). Improving ChatGPT Prompt for Code Generation. arXiv
preprint arXiv:2305.08360.

https://medium.com/slalom-technology/louder-than-a-whisper-praise-for-ai-coding-assistants-that-doesnt-overpromise-9912c9e61db1
https://learn.microsoft.com/en-us/semantic-kernel/prompt-engineering/
https://visualstudiomagazine.com/articles/2021/08/26/github-copilot-security.aspx

© Codility, Ltd. (2023) 17

Harnessing the Power of Generative AI:
A Guide to Best Practices in Software Engineering

[22] Mao, J., Middleton, S. E., & Niranjan, M. (2023). Prompt position really matters in few-shot and zero-shot NLU tasks. arXiv preprint
arXiv:2305.14493.

[23] Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., & Liang, P. (2023). Lost in the Middle: How Language Models Use
Long Contexts. arXiv preprint arXiv:2307.03172.

[24] Wang, Z. J., Montoya, E., Munechika, D., Yang, H., Hoover, B., & Chau, D. H. (2022). Diffusiondb: A large-scale prompt gallery dataset
for text-to-image generative models. arXiv preprint arXiv:2210.14896.

[25] Acar, O. A. (2023). AI Prompt Engineering Isn’t the Future. Harvard Business Review.

[26] Chen, L., Zaharia, M., & Zou, J. (2023). How is ChatGPT’s behavior changing over time?. arXiv preprint arXiv:2307.09009.

[27] Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi, H., & Smith, N. (2020). Fine-tuning pretrained language models: Weight
initializations, data orders, and early stopping. arXiv preprint arXiv:2002.06305.

[28] Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y., Chen, W., & Sun, M. (2023). Parameter-efficient fine-tuning of large-
scale pre-trained language models. Nature Machine Intelligence, 5(3), 220-235.

[29] Weisz, J. D., Muller, M., He, J., & Houde, S. (2023). Toward general design principles for generative AI applications. arXiv preprint
arXiv:2301.05578.

[30] Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., & Ghanem, B. (2023). Camel: Communicative agents for “mind” exploration of
large-scale language model society. arXiv preprint arXiv:2303.17760.

[31] Chuang, Y. N., Tang, R., Jiang, X., & Hu, X. (2023). Spec: A soft prompt-based calibration on mitigating performance variability in
clinical notes summarization. arXiv preprint arXiv:2303.13035.

[32] Liventsev, V., Grishina, A., Härmä, A., & Moonen, L. (2023). Fully Autonomous Programming with Large Language Models. arXiv
preprint arXiv:2304.10423.

[33] Strobelt, H., Webson, A., Sanh, V., Hoover, B., Beyer, J., Pfister, H., & Rush, A. M. (2022). Interactive and visual prompt engineering for
ad-hoc task adaptation with large language models. IEEE transactions on visualization and computer graphics, 29(1), 1146-1156.

