Codility-

MPA

A Multi-Dimensional Benchmark
for Evaluating Code Generation
in Large Language Models

arXiv:2508.13757v1 [cs.SE] 19 Aug 2025

COMPASS: A Multi-Dimensional Benchmark for
Evaluating Code Generation in Large Language
Models

James Meaden
Michat Jarosz
Piotr Jodtowski
Grigori Melnik

Abstract—Current code generation benchmarks focus primar-
ily on functional correctness while overlooking two critical as-
pects of real-world programming: algorithmic efficiency and code
quality. We introduce COMPASS (COdility’s Multi-dimensional
Programming ASSessment), a comprehensive evaluation frame-
work that assesses code generation across three dimensions:
correctness, efficiency, and quality. COMPASS consists of 50 com-
petitive programming problems from real Codility competitions,
providing authentic human baselines from 393,150 submissions.
Unlike existing benchmarks that treat algorithmically inefficient
solutions identically to optimal ones provided they pass test cases,
COMPASS systematically evaluates runtime efficiency and code
quality using industry-standard analysis tools. Our evaluation
of three leading reasoning-enhanced models, Anthropic Claude
Opus 4, Google Gemini 2.5 Pro, and OpenAl O4-Mini-High,
reveals that models achieving high correctness scores do not
necessarily produce efficient algorithms or maintainable code.
These findings highlight the importance of evaluating more than
just correctness to truly understand the real-world capabilities
of code generation models. COMPASS serves as a guiding
framework, charting a path for future research toward AI
systems that are robust, reliable, and ready for production use.

Index Terms—code generation, large language models, bench-
marking, software engineering assessment, AI model evaluation,
COMPASS

I. INTRODUCTION

ARGE language models (LLMs) have achieved remark-

able proficiency in code generation, yet current evaluation
benchmarks predominantly assess only functional correctness
through test case execution [1], [2], [3]. This narrow fo-
cus fails to capture essential aspects of real-world software
development where code must not only work correctly but
also perform efficiently and maintain high quality standards.
Existing benchmarks such as HumanEval [1], MBPP [2], and
HackerRank-ASTRA [4] evaluate models based on functional
correctness, measuring whether generated code produces ex-
pected outputs for given test cases. While these benchmarks
have been valuable for measuring code generation capabilities,
they overlook critical aspects of professional programming: the
ability to write code that is maintainable and runs efficiently.
In real-world software development, a solution that passes
functional tests but runs in exponential time or violates coding

All authors are affiliated with Codility.
Corresponding author: James Meaden; james.meaden@codility.com

best practices would be considered inadequate, yet current
benchmarks would score it as perfect.

This evaluation gap is problematic given the increasing
deployment of LLMs in production environments where code
efficiency and quality directly impact user experience, system
security and scalability, and long-term maintainability [5], [6].
Recent reasoning-enhanced models demonstrate sophisticated
problem-solving capabilities, yet the field lacks a compre-
hensive understanding of whether this enhanced reasoning
translates to better algorithmic efficiency and code quality.

To address these limitations, we introduce COMPASS
(COdility’s Multi-dimensional Programming ASSessment), a
benchmark that evaluates code generation in three critical
dimensions: correctness, efficiency, and quality. COMPASS
consists of 50 competitive programming problems from real
coding competitions hosted by Codility, providing comprehen-
sive percentile rankings of LLMs against human performance
baselines from 393,150 submissions. We developed COM-
PASS to serve as a navigational aid for the field, enabling
researchers and professionals to pinpoint where current models
truly stand in terms of real-world performance, and to chart a
clear path forward toward robust, efficient, and maintainable
Al-driven code generation.

II. RELATED WORK AND MOTIVATION
A. Limitations of Current Benchmarks

Most existing benchmarks reduce evaluation to a single axis:
functional correctness. HumanEval [1] helped popularize this
approach, and later benchmarks such as APPS [7], SWE-bench
[3], DS-1000 [8], and HackerRank-ASTRA [4] largely pre-
serve this narrow focus, even when applied to more complex,
real-world tasks.

This leads to two critical blind spots:

« Efficiency: A brute-force O(n®) implementation is
treated as equivalent to an optimal O(nlogn) algorithm
as long as both pass test cases designed to assess only
code functionality. This fails to reflect real-world software
development, where efficiency determines feasibility and
scalability.

o Quality: Key aspects such as maintainability, readability,
modularity, and adherence to best practices—critical for
long-term productivity—are largely ignored in prominent

https://arxiv.org/abs/2508.13757v1

evaluations. Current benchmarks prioritize syntactic cor-
rectness while overlooking principles of sustainable and
scalable software engineering [5], [6].

B. The Need for Multi-Dimensional Assessment

The importance of efficiency and quality is far from the-
oretical. Competitive programming platforms such as Code-
forces and TopCoder impose strict runtime and memory con-
straints, while decades of software engineering research em-
phasize multi-dimensional metrics for assessing code quality.
However, current code generation benchmarks fall short of
capturing these essential dimensions. By relying primarily
on pass@k metrics, they reduce software development to a
binary pass/fail task—overlooking the efficiency, quality, and
sustainability that define real engineering value. The result is a
skewed portrayal of model capabilities, risking overestimation
of their readiness for real-world use. This reveals a critical dis-
connect between what benchmarks measure and what modern
software development truly demands.

III. COMPASS BENCHMARK DESIGN

COMPASS includes 50 coding challenges selected from
Codility’s public contests held between 2011 and 2021. These
problems span a wide range of algorithmic domains and dif-
ficulty levels, and are accompanied by large-scale human per-
formance data, enabling more nuanced and multidimensional
model evaluation. Participants could complete these challenges
using any of 25+ mainstream programming languages, in-
cluding C, C++, Python, Java, JavaScript, Go, Rust, Swift,
Kotlin, PHP, Ruby, C#, TypeScript, and others. This diversity
ensures that solutions reflect a broad range of programmer
preferences and constraints. In this initial study, we restricted
model-generated solutions to Python 3 to control for variance
in performance outcomes across language implementations.
Future research using the COMPASS benchmark will expand
this analysis to include a broader set of programming lan-
guages.
Each problem in COMPASS has been attempted by thou-
sands of participants in real programming competitions, result-
ing in 393,150 human submissions. This large-scale dataset
provides empirical insight into common patterns of failure
and variation in problem-solving approaches under time-
constrained conditions. Problems were selected to ensure
diversity in topic coverage and to expose variation in rea-
soning depth, algorithmic efficiency, and implementation ro-
bustness—dimensions not captured by correctness-only bench-
marks.
To contextualize model performance, we report aggregate
statistics from the full set of historical human submissions
(see Appendix A) along with percentile scores for each model
against human-based norms. Overall benchmark data from
human submissions are:
o Average human mean score: 23.31% (range: 11.00%—
40.40%).

o Average human median score: 9.35% (range: 0.00%—
44.00%).

o Average human standard deviation: 31.08.

o Average human skew: +1.36.

The positive average skew in human scores indicates a long
tail of low-scoring attempts, evidence of high difficulty and
common pitfalls such as inefficient solutions, misinterpreted
constraints, or failure to handle edge cases. In short: these are
hard problems, even for experienced programmers.

By anchoring the benchmark in large-scale human data from
open competitions, COMPASS offers a high-signal, multi-
dimensional evaluation of code generation systems, assessing
not just whether a model produces a working solution, but
how it performs under the same pressure-tested conditions
that reveal meaningful variation in human skill. Appendix A
shows the human performance baselines on all 50 COMPASS
problems.

A. Multi-Dimensional Evaluation Framework

COMPASS evaluates each model solution across three in-
dependent dimensions: functional correctness, computational
efficiency, and code quality. This structure reflects how soft-
ware is evaluated in the real world: an examination of not just
whether it works, but how well it works and how maintainable
it is. Below we describe each pillar of our multidimensional
evaluation framework.

1) Correctness: Each problem includes a comprehensive
test suite spanning:

« Basic functionality
o Edge cases
o Corner cases

Correctness is scored as the percentage of test cases passed,
providing a more granular view of solution robustness com-
pared to frameworks that rely on binary pass/fail metrics, i.e.,

N, passed

Ceorr = 100 -)

total

where Npggsea 1s the number of tests passed and Ny is the
total number of tests.

2) Efficiency: Efficiency test cases are explicitly designed
to stress algorithmic scalability. Each efficiency test case in-
cludes large input sizes near the upper bounds of the problem’s
constraints. These cases are evaluated under strict runtime
thresholds derived from efficient, expert-crafted reference so-
lutions with known optimal time and space complexity. The
efficiency score is calculated as the percentage of efficiency
test cases passed. This dimension separates solutions that are
merely correct from those that are correct and scalable.

3) Quality: Beyond correctness and speed, COMPASS
evaluates how well-written the code is, using static analysis via
CodeScene, an industrial-grade code quality platform. Well-
written code is easy to understand, modify, and extend, thus
minimizing technical debt and supporting long-term maintain-
ability [5], [6].

Using Codility’s internal CodeScene configuration, COM-
PASS analyzes each solution across multiple dimensions of
code quality, including: cyclomatic and cognitive complex-
ity, function length, and nesting depth (complexity); code
duplication, cohesion, method design, parameter structure,
and naming conventions (maintainability); and adherence to

language-specific idioms, detection of anti-patterns, and over-
all structural quality (best practices). Each solution receives a
composite code quality score (1-10), normalized to a 1-100
scale for consistency across evaluation metrics. In addition to
overall code quality scores, we investigate the frequency of
specific code quality issues per code generation model.

IV. EXPERIMENTAL SETUP
A. Model Selection

We evaluate three state-of-the-art reasoning-enhanced mod-
els representing the current frontier in code generation: An-
thropic Claude Opus 4, Google Gemini 2.5 Pro, OpenAl O4-
Mini-High.

B. Evaluation Protocol

a) Sampling Strategy.: We employ k = 64 independent
samples per model-problem combination, using the model’s
default temperature setting (1" = 1.0). This sampling strategy
balances computational cost with statistical rigor, enabling
stable estimates of central tendency and variance. A sample
size of 64 allows for reliable mean comparisons across models
and problems, while capturing meaningful variability in the
nuances of model code generation.

b) Prompt Variation.: To investigate how prompt framing
might influence model behavior, we tested four distinct prompt
types, each designed to emphasize a different optimization
objective during code generation. Prompts were appended to
the start of each coding challenge.

Prompt 1: Neutral (Control). This baseline prompt provided
no additional guidance beyond solving the problem ‘“effec-
tively”:
Below is a programming challenge. Your task is to write
code that solves the problem. You will use only the Python
programming language, version 3. You may not install
additional libraries.

Write a solution that effectively solves the problem as
described.
Prompt 2: Correctness-Optimized. This version emphasized
the importance of passing all test cases:

Below is a programming challenge. Your task is to write
code that solves the problem. You will use only the Python
programming language, version 3. You may not install
additional libraries.

Prioritize writing code that passes all test cases, including

edge cases and uncommon input putterns.
Prompt 3: Efficiency-Optimized. This prompt instructed the
model to focus on computational efficiency:

Below is a programming challenge. Your task is to write
code that solves the problem. You will use only the Python
programming language, version 3. You may not install
additional libraries.

Prioritize writing code that runs efficiently, especially on
large or complex inputs.
Prompt 4: Dual Objective. This prompt combined the prior-
ities of both correctness and efficiency:

Below is a programming challenge. Your task is to write
code that solves the problem. You will use only the Python

programming language, version 3. You may not install
additional libraries.

Prioritize writing code that passes all test cases while also
running efficiently, especially on large or complex inputs.
This four-way prompt design enabled us to systematically
explore potential trade-offs between correctness, efficiency,
and code quality as a function of prompt conditioning.

V. RESULTS AND ANALYSIS
A. Multidimensional Assessment Validation

Before analyzing model performance, we first validated
our multidimensional evaluation framework to ensure that
correctness, efficiency, and quality provide complementary and
non-redundant signals. This step is essential for establishing
the value of a multidimensional scoring approach, in line
with best practices in human performance assessment [9].
To do so, we conducted correlation analyses and principal
components analysis (PCA). The goal was to confirm that
each dimension contributes unique information to the overall
performance composite (i.e., the aggregated score resulting
from correctness, efficiency, and quality), rather than simply
reflecting the same underlying domain of performance.

1) Correlation Analyses: We computed pairwise correla-
tions across the full dataset of model submissions (/N = 3,200
per correlation). Correctness and efficiency were moderately
correlated (r = .655, p<.001), suggesting that more correct
completions tend to also execute more efficiently. In contrast,
code quality was not correlated with correctness (r = .089,
p<.001) or efficiency (r = .022, p<.001). These low effect
sizes indicate that the code-quality metric captures a distinct
dimension of performance, orthogonal to writing code that
merely works or runs quickly.

These findings support the structure of our framework:
all three dimensions reflect meaningfully different aspects of
software performance, and should be retained as independent
axes in model evaluation.

TABLE 1
CORRELATION BETWEEN PERFORMANCE DIMENSIONS

Correctness Efficiency Quality
Correctness 1 0.655 0.089
Efficiency 0.655 1 0.022
Quality 0.089 0.022 1

To better understand the relationship between dimensions in
this multi-dimensional performance framework, we examined
correlation matrices separately by model. While the gen-
eral pattern of moderate correctness—efficiency alignment and
code—quality independence holds overall, notable variations
emerge across models.
04-Mini-High (Table II). O4-Mini-High shows a strong
correlation between correctness and efficiency (r = .809),
suggesting that correct outputs are frequently accompanied
by efficient execution, and vice versa. However, correlations
with code quality are negligible (r = —.014 with correctness;
r = .005 with efficiency), indicating that code quality is
independent of the model’s ability to write correct and efficient
code.

TABLE 11
O4-MINI-HIGH CORRELATIONS

Correctness Efficiency Quality
Correctness 1 0.809 -0.014
Efficiency 0.809 1 0.005
Quality -0.014 0.005 1

Gemini 2.5 Pro (Table III). Gemini 2.5 Pro shows a
moderate-to-strong correctness—efficiency correlation (r =
.655) and a negligible correctness—quality correlation (r =
.067). While there is a low efficiency—quality correlation
(r = .224), this relationship is notably higher than with O4-
Mini-High, suggesting a slightly stronger tendency for Gemini
2.5 Pro to write higher-quality code when it writes highly
efficient code.

TABLE III
GEMINI 2.5 PRO CORRELATIONS

Correctness Efficiency Quality
Correctness 1 0.655 0.067
Efficiency 0.655 1 0.224
Quality 0.067 0.224 1

Claude Opus 4 (Table IV). Claude Opus 4 presents a lower
correctness—efficiency correlation (r = .503) relative to the
other models. Notably, it exhibits the strongest relationship
between correctness and code quality (r = .359), with a weak
but non-zero efficiency—quality correlation (r = .165). While
these effect sizes are still relatively small, they suggest that
Claude Opus 4 may generate more structurally sound code
when it produces correct solutions.

TABLE IV
CLAUDE OPUS 4 CORRELATIONS

Correctness Efficiency Quality
Correctness 1 0.503 0.359
Efficiency 0.503 1 0.165
Quality 0.359 0.165 1

In summary,

o When O4-Mini-High writes functional (i.e., correct) code,
that code is also very likely to be efficient, but may or
may not be high quality.

e When Gemini 2.5 Pro writes functional (i.e., correct)
code, that code is likely to be efficient, but may or may
not be high quality

e When Claude Opus 4 writes functional (i.e., correct)
code, that code is only somewhat likely to be efficient,
but is also more likely to be high quality.

Across all three models, none of the evaluation dimen-
sions—correctness, efficiency, or code quality—are so highly
correlated as to indicate redundancy. While correctness and
efficiency tend to be moderately-highly correlated, particularly
for O4-Mini-High and Gemini 2.5 Pro, code quality remains
independent from both. This pattern holds not only in the
aggregate analysis but also within each model individually.

These results provide initial empirical support for treating
correctness, efficiency, and quality as complementary, non-
overlapping dimensions of performance in code generation
evaluation.

2) Principal Components Analysis: To support the concep-
tual and empirical separation of correctness, efficiency, and
code quality, we conducted a PCA. While our evaluation
framework treats these as distinct dimensions by design, PCA
allows us to test whether they in fact capture independent
sources of variation in model behavior, rather than overlapping
aspects of a single latent factor.

The first principal component (PC1) explained 55.4% of the
total variance and loaded strongly on both correctness (0.705)
and efficiency (0.699), suggesting a shared performance di-
mension related to basic task completion. In contrast, code
quality showed a minimal loading on PC1 (0.118), indicating it
contributes little to this common factor. The second component
(PC2) accounted for an additional 33.1% of the variance
and loaded almost exclusively on code quality (0.990), with
negligible contributions from correctness and efficiency. This
confirms that code quality represents a statistically distinct
and orthogonal dimension, not captured by correctness or
efficiency alone. The third component (PC3) explained the
remaining 11.4% of variance and showed opposing loadings
for correctness (0.708) and efficiency (—0.702), suggesting a
residual tradeoff between these metrics. This may reflect cases
where models produce correct but inefficient solutions (e.g.,
brute-force approaches) or, conversely, generate efficient code
that fails to handle all test cases. While PC3 accounts for a
smaller portion of variance, it highlights nuanced patterns that
would not be evident from correlation analysis alone.

PCA Explained Variance

o
%]

o
=

Variance Explained
o o
[w

o
=

PC3

o
o

Fig. 1. PCA explained variance across components.

TABLE V
PCA LOADINGS

PC1 PC2 PC3
Correctness 0.705 -0.033 0.708
Efficiency 0.699 -0.134 -0.702
Quality 0.118 0.990 -0.071

Taken together, these results validate the structure of our

multi-dimensional framework. Correctness and efficiency load
strongly on the same principal component, indicating they re-
flect a shared performance dimension. However, their opposing
loadings on a third component suggest that each still captures
distinct problem-solving tendencies—such as favoring brute-
force correctness over efficiency, or vice versa. Meanwhile,
code quality loads almost exclusively on a separate component,
highlighting its role as an independent signal not captured by
correctness or efficiency. This dimensional structure confirms
that all three metrics contribute complementary information,
reinforcing the need for a benchmark like COMPASS that
evaluates model performance across multiple, independently
meaningful axes.

B. Overall Performance Summary

With the validity of the multidimensional scoring framework
established, we now summarize model performance across
the three COMPASS evaluation dimensions—correctness, effi-
ciency, and quality—along with the resulting composite scores
(i.e., the average of the three dimensions).

Across all 50 COMPASS problems, the three models
achieved high average correctness scores, indicating strong
baseline capabilities in producing syntactically valid and func-
tionally correct code. However, differences across models
become more apparent when considering efficiency and code
quality, as well as variability across runs. Table VI shows
overall model performance scores (the numbers in the table,
and all similar tables that follow, represent median / mean and
standard deviation values).

Claude Opus 4 exhibited the lowest overall performance and
the highest variability. While its code quality score was strong
(mean of 92.3), its efficiency score was substantially lower
(mean of 35.4), and its correctness scores were lower and less
consistent (mean of 72.2, SD of 36.5). These limitations are
reflected in its low mean composite score of 66.1 and standard
deviation (SD) of 23.8.

0O4-Mini-High delivered the most consistently high perfor-
mance in both correctness (mean of 95.6) and efficiency (mean
of 93) dimensions. Though scored the lowest in quality (mean
of 89.2). Its mean composite score of 92.3 was the highest
across the three models evaluated. O4-Mini-High also showed
low variability in its scores, having the smallest SD for all
dimensions except quality.

Gemini 2.5 Pro also performed strongly across all three
dimensions, with correctness (mean of 93.8), efficiency (mean
of 85.4), and the highest code quality (mean of 93.2) along
with the lowest variability in code quality (SD of 5.9). Its
overall composite mean score was 90.4.

C. Dimension-Specific Analysis

1) Correctness Analysis: The violin plot in Fig. 2 shows
the distribution of correctness scores for each model across
all 50 benchmark tasks. While all three models demonstrate a
large concentration of scores near the upper end of the scale,
differences in distributional shape and spread are notable. The
04-Mini-High model displays a highly peaked distribution
near 100%, with minimal variance and few low-performing
outliers, indicating that this model solves nearly every task
correctly and consistently. Gemini 2.5 Pro also exhibits a
strong mode near 100%, but with a slightly broader spread,
suggesting occasional drops in performance on specific tasks.
In contrast, Claude Opus 4 shows a markedly wider and flatter
distribution, with a substantial number of scores clustering
well below 80% and a long tail extending to zero. This
reveals much more variable performance, with several tasks
where Claude Opus 4 did not provide correct and functional
code. Overall, the plot highlights O4-Mini-High’s consistency
in writing highly functional code, Gemini 2.5 Pro’s similar
capabilities with slightly less consistency, and Claude Opus 4’s
capability to write correct and functional code but with very
low consistency (Appendix B contains the per-task efficiency
score statistics for each model).

80

60

o4-mini-high gemini-2_5-pro

Model

claude-opus-4-20250514

Fig. 2. Distribution of correctness scores by model across 50 tasks.

2) Efficiency Analysis: The distribution of efficiency scores,
reflecting runtime efficiency and solution speed, reveals im-
portant contrasts across the three models. Both O4-Mini-
High and Gemini 2.5 Pro, once again, show tightly clustered
distributions near the upper limit of the scale, indicating
a very high consistency in producing highly efficient code.
Most outputs from these models executed quickly and without
timeouts, reflected in their high means (93.0 for O4-Mini-
High; 85.4 for Gemini 2.5 Pro).

TABLE VI
OVERALL MODEL PERFORMANCE SCORES (MEDIAN / MEAN + SD FOR EACH MODEL ON THE FOUR COMPASS METRICS).

Model Correctness

Efficiency

Quality Composite

100 / 72.2 £+ 36.5
100 / 93.8 £+ 20.3
100 /956 £ 174

Claude-Opus—4
Gemini-2.5-Pro
04-Mini-High

222 /354 £ 39.1
100 / 85.4 £+ 30.3
100/ 93.0 £ 21.5

93.8/923 £6.2
945/932 £59
93.7/89.2 £ 129

66.7 / 66.1 £ 23.8
97917904 £ 17.1
9757923 £ 155

In contrast, Claude Opus 4 exhibited a wide and skewed
distribution of efficiency scores. Although it occasionally
produced efficient solutions, many solutions timed out or were
otherwise inefficient, resulting in a mean efficiency score of
35.4. This is visible in the violin plot (Fig. 3), where Claude
Opus 4’s distribution shows a high density near the lower end
of the efficiency scale, reflecting repeated failures to generate
efficient code. These findings suggest that while all models
tend to produce functional (i.e., correct) code (see previous
section), there are substantial differences in how efficient
that code is. This distinction has important implications for
deployment in real-world environments (Appendix C contains
the per-task efficiency score statistics for each model).

100
80

40

o4-mini-high gemini-2_5-pro

Model

daude-opus-4-20250514

Fig. 3. Distribution of efficiency scores by model across 50 tasks.

3) Code Quality Analysis: While correctness and efficiency
evaluate whether a model produces a working and efficient
solution, code quality reflects how readable, maintainable,
and idiomatic (i.e., stylistically aligned with best practices in
the language) that solution is. High-quality code is easier to
debug, extend, and deploy, making it a critical dimension in
practical software development. To assess this, we used Code-
Scene’s evaluation method based on automated linters and
code structure heuristics. These scores capture adherence to
style conventions, use of clear variable names, modularity, and
other best practices commonly valued in software engineering.
Figure 4 displays the distribution of code quality scores across
all models (Appendix D contains the per-task quality score
statistics for each model).

The violin plot reveals that all three models demonstrate
relatively similar and consistently high performance on code
quality. The distributions are tightly clustered between 80%
and 100%, with long, dense central bodies and narrow tails.
This suggests that, regardless of differences in correctness or
efficiency, all three models are capable of producing clean,
idiomatic Python code with minimal syntactic or stylistic
flaws.

O4-Mini-High shows a skew toward the higher end of
the distribution, with a smaller amount of perfect scores and
fewer outputs below 80%. Gemini 2.5 Pro and Claude Opus
4 show consistently high scores mostly above 80%. This
convergence in code quality suggests that modern LLMs, even
when struggling to produce correct or efficient solutions, have
internalized robust stylistic norms and best practices. It also

confirms the statistical finding from our PCA: code quality
represents a largely independent axis of model behavior. The
practical implication is that even when models fail to produce
working or fast code, the outputs may still be readable and
salvageable, making them potentially useful for collaborative
workflows where human review and modification follow au-
tomated generation.

100 7
80

60

o4-mini-high gemini-2_5-pro

Model

claude-opus-4-20250514

Fig. 4. Distribution of code quality scores by model across 50 tasks.

In addition to reviewing model code quality scores, exam-
ining the number and type of code quality issues provides a
complementary perspective on model performance. Table VII
shows the number of specific problems flagged across model
submissions, offering more granular insight into the typical
nature and frequency of code quality concerns for each model.
While all three models had a similar number of code quality
issues, O4-Mini-High showed the highest mean issue count
per submission (2.048), followed by Claude Opus 4 (1.950)
and Gemini 2.5 Pro (1.874). The median number of issues per
submission was consistent across models at 2.

TABLE VII
SUMMARY OF CODE QUALITY ISSUES BY MODEL

Mean Issue Median Issue
Model Total Per Submission Per Submission
Claude-Opus—4 6237 1.950 2
Gemini-2.5-Pro 5998 1.874 2
04-Mini-High 6555 2.048 2

Following the high-level issue count analysis, we exam-
ined the specific types of code quality issues flagged across
model outputs (Table VII). While the total issue counts
differ only modestly between models, the types of issues
reveal more about each model’s stylistic and structural ten-
dencies. This breakdown highlights whether problems are
primarily cosmetic, structural, or symptomatic of deeper de-
sign flaws—insights that are critical for developers evaluating
downstream maintainability.

Issue profile by category. As shown in Table VIII, all
three models exhibit a high proportion of issues in three
categories: Bumpy Road Ahead, Deep, Nested Complexity, and
Complex Method—all structural markers of cognitive load and
refactoring difficulty. O4-Mini-High had the highest rate of

TABLE VIII
SPECIFIC CODE QUALITY ISSUES BY MODEL

Code Quality Issue Description

Claude-Opus-4 Gemini-2.5-Pro 04-Mini-High

Bumpy Road Ahead Functions with multiple chunks of nested
logic, making code harder to read,
refactor, and reason about.

Excessive control structure nesting
increases cognitive load and is strongly
linked to bugs.

High cyclomatic complexity means the
function has too many logical branches,
reducing readability and maintainability.
Overly long functions make the code
harder to read and understand.

Branches with multiple logical conditions
reduce clarity and should be simplified or
encapsulated.

Complex logic outside of functions should
be refactored into named functions to
improve structure.

Too many function parameters suggest low
cohesion or missing abstractions.
Measures average logical branching per
function; higher values suggest more
testing and complexity.

Identical or near-identical code blocks
across functions increase maintenance
overhead and reduce clarity.

Deep, Nested Complexity

Complex Method

Large Method

Complex Conditional

Global Conditions

Excess Number of Function
Arguments
Overall Code Complexity

Code Duplication

2154 (67.1%) 2100 (65.6%) 2353 (74.5%)

1383 (43.2%) 848 (26.5%) 1127 (35.2%)

2088 (65.2%) 2250 (69.7%) 2380 (74.4%)

174 (5.4%) 399 (12.5%) 222 (6.9%)
375 (11.7%) 220 (6.9%) 344 (10.8%)
3(0.1%) 64 (2.0%) 35 (1.1%)

68 (2.1%) 124 (3.9%) 64 (2.0%)

0 (0.0%) 4 (0.1%) 0 (0.0%)

0 (0.0%) 9 (0.3%) 0 (0.0%)

“Bumpy Road” issues (74.5%), indicating a tendency to embed
multiple logic segments in single functions. Claude Opus 4
(67.1%) and Gemini 2.5 Pro (65.6%) also showed a high rate
of this issue.

Deep nesting. Claude Opus 4 showed the highest incidence
of deep nesting (43.2%), suggesting frequent use of complex,
multi-level control flow. This aligns with its greater variability
in code quality scores. In contrast, O4-Mini-High (35.2%) and
Gemini 2.5 Pro (26.5%) tended to generate simpler, flatter
logic structures.

Complex methods. O4-Mini-High had the highest rate of
Complex Method issues (74.4%), followed by Gemini 2.5
Pro (69.7%) and Claude Opus 4 (65.2%). This suggests
that, despite O4-Mini-High and Gemini 2.5 Pro’s strengths in
modularity and clarity, they still tend to generate methods that
are densely packed with logic and contain numerous branches.
Other categories. Less frequent categories such as Large
Method, Complex Conditional, and Excess Number of Func-
tion Arguments still reveal model-level differences. Gemini 2.5
Pro had more than twice as many large methods (12.5%) as
Claude Opus 4 (5.4%) or O4-Mini-High (6.9%). Claude Opus
4 had more complex conditionals (11.7%) than Gemini 2.5 Pro
(6.9%), reinforcing its tendency toward cognitively demanding
logic.

Rare issues. Rarely flagged issues such as Code Duplica-
tion, Global Conditions, and Overall Code Complexity were
minimal across all models, indicating general adherence to
abstraction and reuse best practices.

Takeaway. In sum, while all three models demonstrate broadly
similar total issue volumes, their underlying patterns of com-
plexity differ in meaningful ways. O4-Mini-High frequently
embeds multiple logic segments and dense branching within
single methods, despite its overall strengths in clarity. Claude
Opus 4’s outputs are marked by deeper nesting and more

complex conditionals, reflecting a style that may increase
cognitive load during review and maintenance. Gemini 2.5 Pro
stands out for producing larger methods, suggesting occasional
lapses in decomposition despite otherwise strong modularity.
These distinctions matter: they reveal that even when models
pass functional tests, their structural tendencies can introduce
hidden costs for long-term maintainability and engineering
effort.

4) Composite Score Analysis: To provide a comprehensive
view of model performance, we computed a composite score
for each task by equally weighting the three evaluation dimen-
sions: correctness, efficiency, and quality. This score reflects a
model’s ability to generate not only correct, but also efficient
and high-quality code. Figure 5 displays the distribution of
these composite scores for each model across all 50 benchmark
tasks.

O4-Mini-High stands out for its consistent and top-tier
performance, with the vast majority of outputs achieving com-
posite scores above 90%. Its narrow, top-heavy distribution
indicates that it almost always delivers code that is correct,
fast, and clean, with few outliers or low-performing cases. The
consistency across dimensions translates to highly predictable
performance, a major strength in production environments.

Gemini 2.5 Pro shows a similar pattern, with scores also
tightly clustered at the upper end of the scale. Its slightly wider
spread and greater presence of mid-range scores suggest a
small but noticeable drop in consistency compared to O4-Mini-
High, though overall performance remains strong.

Claude Opus 4, by contrast, exhibits a dramatically wider
and flatter distribution. Its scores span a broad range, with a
significant proportion of tasks falling below the 80% mark
and a wider tail extending toward zero. This reflects the
model’s uneven performance across dimensions, particularly
its frequent struggles with efficiency.

100

40

o4-mini-high gemini-2_5-pro claude-opus-4-20250514

Model

Fig. 5. Distribution of composite scores by model across 50 tasks.

In sum, the COMPASS benchmark reveals that O4-Mini-
High and Gemini 2.5 Pro are both highly performant general-
purpose code generators, each with slight advantages in either
mean score or variability depending on the task. Claude Opus
4, however, demonstrates inconsistent and often low composite
performance, largely due to low efficiency scores, potentially
limiting its reliability in production contexts (Appendix E con-
tains the per-task composite score statistics for each model).

D. Human Baseline Comparison

To contextualize model performance against human pro-
grammers, we benchmarked each model’s combined correct-
ness and efficiency score relative to human participants in a
series of Codility competitive programming challenges. This
analysis was limited to only correctness and efficiency scores
as the human benchmark data did not contain scores for code
quality. These comparisons are based on 393,150 real-world
human submissions.

For each task, we estimated the human-equivalent percentile
rank of the model’s score by calculating a z-score using the
formula: X

z=2"F @)
o

where X is the model’s score, i is the human mean, and
o is the human standard deviation. This z-score was then
converted to a percentile using the cumulative distribution
function (CDF) of the standard normal distribution. For tasks
with skewed or multimodal human performance data, these
estimates should be interpreted with caution (Appendix F
contains the full task-level data).

TABLE IX
MODEL PERFORMANCE (CORRECTNESS AND EFFICIENCY) AGAINST
HUMAN BENCHMARKS

Model Mean Percentile SD Percentile
Claude-Opus—4 76.580 19.478
Gemini2.5-pro 96.280 6.673
04-Mini-High 97.840 3.599

Table IX reports the mean human-equivalent percentile for
each model, along with the SD of those percentiles across

tasks. O4-Mini-High achieved the highest average percentile
rank (97.840), followed closely by Gemini 2.5 Pro (96.280),
while Claude Opus 4’s percentile rank was lowest (76.580).
The SD percentile reflects how much a model’s relative
standing fluctuates across tasks: Claude Opus 4 shows the
greatest variation (SD = 19.478), meaning its performance,
compared to humans, varies substantially depending on the
task. In contrast, O4-Mini-High (SD = 3.599) and Gemini
2.5 Pro (SD = 6.673) display far more consistent rankings,
suggesting they outperform human participants at a more
stable level across tasks.

1) Consistency Across Tasks: While prior sections explored
how model performance varies across tasks, here we examine
within-task consistency—how reliably a model produces simi-
lar results when solving the same problem multiple times. For
each task, we computed the SD of each model’s correctness,
efficiency, and quality scores across repeated generations.
A lower mean SD indicates more consistent behavior. We
also report the SD of those SDs, capturing how much this
consistency itself varies from task to task.

TABLE X
MODEL CONSISTENCY: PER-TASK SCORE VARIABILITY

Performance
Model Dimension Mean SD SD of SDs
04-Mini-High Correctness 8.427 11.558
04-Mini-High Efficiency 10.331 12.089
04-Mini-High Quality 3.724 2.830
Gemini-2.5-Pro Correctness 10.560 12.082
Gemini-2.5-Pro Efficiency 13.312 14.003
Gemini-2.5-Pro Quality 3.153 1.728
Claude-Opus—-4 Correctness 17.366 14.165
Claude—-Opus—4 Efficiency 15.895 13.753
Claude-Opus—4 Quality 3.435 1.797

Consistency summary. Table X shows the average and vari-
ability of model performance consistency across repeated runs.
04-Mini-High exhibits the lowest mean standard deviations
for correctness and efficiency, suggesting more stable behavior
when attempting the same task multiple times. Claude Opus
4 shows notably higher variability—particularly in correct-
ness—while Gemini 2.5 Pro generally falls in between.
Magnitude of variability. While the direction of these differ-
ences aligns with earlier findings, the magnitude is not trivial.
Even small standard deviations, which represent fluctuation
in model performance, can impact user trust and complicate
downstream evaluation or deployment decisions.

Composite consistency score. To synthesize consistency
across dimensions, we computed a composite SD for each
task by aggregating the model’s correctness, efficiency, and
code-quality SDs. Averaging these across tasks yields a single
consistency score per model. O4-Mini-High had the lowest
mean composite SD (7.49), indicating the most stable perfor-
mance across repeated generations. Claude Opus 4 showed the
highest variability (12.23), with Gemini 2.5 Pro again falling
in between (9.01).

TABLE XI
OVERALL MODEL CONSISTENCY

Mean Composite SD of Composite

Model SD SDs
Claude-Opus—4 12.23 8.00
Gemini-2.5-Pro 9.01 8.74
04-Mini-High 7.49 7.89

We also report the SD of these composite SDs to assess
whether consistency itself was stable across tasks. O4-Mini-
High again showed the most uniform behavior (SD = 7.89),
while Gemini 2.5 Pro’s consistency varied the most from task
to task (SD = 8.74). Claude Opus 4 showed high variability
in both metrics. Together, these results reinforce the finding
that O4-Mini-High is not only strong on average performance
but also more reliable and consistent, producing stable outputs
across repeated runs and different tasks.

E. Prompting Effects

To assess whether prompt phrasing influences model per-
formance, we tested four distinct prompting conditions across
tasks: neutral, correctness-focused, efficiency-focused, and
dual-focused (emphasizing both correctness and efficiency).
Each model received the same task under each of these prompt
framings, allowing us to isolate the effect of prompt intent on
output quality.

Table XII shows that prompt phrasing had only modest
effects on model performance at this aggregated level of
analysis, but the observed differences were directionally con-
sistent with the intent of each prompt. For example, cor-
rectness prompts produced slightly higher average correctness
scores (87.535) with the lowest variability (SD = 27.891),
and efficiency prompts led to the highest mean efficiency
(72.357) with the lowest SD (39.711). Similarly, dual-focused
prompts yielded the highest average code quality (91.765),
while neutral prompts resulted in the most stable composite
performance score (SD = 22.517).

Although these differences are small in magnitude, they
follow predictable patterns—indicating that even lightweight
prompt framing can subtly steer model behavior. It’s important
to note that the prompts used in this study were deliberately
minimal: brief, high-level instructions rather than detailed or
example-driven prompts. It is plausible that more elaborate
prompting strategies could lead to stronger differentiation in
model performance.

To better understand how individual models respond to
prompt framing, we next examine the effects of each prompt
type on performance metrics for each model independently.

0O4-Mini-High exhibited high and consistent performance
across all prompt types, with minimal variation in response
to prompt framing. Importantly, these small variations did not
follow a consistent pattern aligned with prompt intent—for
instance, the efficiency prompt did not clearly yield the highest
efficiency, nor did the correctness prompt lead to the highest
correctness. This suggests that O4-Mini-High is largely robust
to prompt phrasing, and that its outputs are stable and strong
regardless of minor differences in prompt framing (See Table
XIII).

Gemini 2.5 Pro showed a generally stable pattern across
all prompt types, but the results did not consistently reflect
the intended emphasis of each prompt. The efficiency-focused
prompt produced the highest efficiency score (86.171), align-
ing with its objective, but also yielded the highest scores for
correctness (94.701). This suggests that while the efficiency
prompt may have provided a clearer or more effective signal,
the other prompt framings had minimal differentiating effect.
Overall, Gemini 2.5 Pro appears largely robust to prompt
variation, with high performance and low variability across
prompt types (See Table XIV).

In contrast to the other models, Claude Opus 4 was more
responsive to prompt framing, with larger absolute differences
across conditions (Table XV). Correctness improved from
70.865 (efficiency prompt) to 73.155 (correctness prompt), and
efficiency rose from 33.557 (correctness prompt) to 37.204
(efficiency prompt)—still below the other models, but con-
sistently improved when given explicit guidance. Composite
scores showed a similar pattern, increasing from 65.378 (neu-
tral) to 67.403 (dual). Code quality, however, remained stable
and high across prompts. These results suggest that Claude
Opus 4 benefits more noticeably from prompt effects, and that
targeted phrasing can meaningfully influence its output quality
and consistency, though improvements still remain modest
overall (See Table XV).

VI. DISCUSSION

The results presented in this paper challenge a central
assumption embedded in current code generation bench-
marks: that functional correctness alone is a sufficient proxy
for real-world programming ability. By systematically eval-
uating correctness, efficiency, and code quality across a
high-difficulty, human-anchored benchmark, COMPASS re-
veals that this assumption no longer holds—if it ever did.

TABLE XII
AGGREGATED PROMPTING EFFECTS

Prompt type Correctness

Efficiency

Quality Composite

neutral 100 / 87.356 (28.042) 100 / 70.966 (40.432)
correctness 100 / 87.235 (27.891) 100 / 70.293 (40.694)
efficiency 100 / 87.235 (28.293) 100 / 72.357 (39.711)
dual 100 / 86.677 (28.691) 100 / 71.509 (40.232)

94/ 91.594 (9.411)
94/ 91.462 (9.548)
93.8 / 91.587 (8.692)
93.8 / 91.765 (8.654)

96 / 82.894 (22.517)
96 / 82.647 (22.634)
96.2 / 83.343 (22.665)
96.1 / 82.936 (29.901)

TABLE XIII

0O4-MINI-HIGH PROMPTING EFFECTS

Prompt type

Correctness

Efficiency

Quality

Composite

neutral
correctness
efficiency
dual

100 / 95.964 (16.186)
100 / 95.604 (17.240)
100 / 96.140 (16.101)
100 / 94.692 (19.807)

100 / 93.734 (20.256)
100 /7 92.636 (21.788)
100 / 93.697 (20.414)
100 /7 92.109 (23.407)

93.5 / 88.771 (13.377)
93.7 / 88.801 (13.836)
93.8 / 89.890 (12.177)
93.5 / 89.396 (12.256)

97.5/92.703 (13.574)
97.5/92.033 (15.333)
97.5 /1 92.985 (14.470)
97.5 1/ 91.508 (18.054)

TABLE XIV

GEMINI 2.5 PRO PROMPTING EFFECTS

Prompt type

Correctness

Efficiency

Quality

Composite

neutral
correctness
efficiency
dual

100 / 93.596 (19.831)
100 / 93.846 (20.039)
100 / 93.996 (19.019)
100 / 92.752 (22.343)

100 / 85.411 (30.163)
100 / 84.685 (30.938)
100 / 86.171 (29.195)
100 / 85.179 (30.885)

94.8 / 93.415 (5.862)
94.8 /1 93.122 (5.916)
94.4 7/ 92.958 (6.072)
94.8 /1 93.270 (5.856)

97.9 /1 90.601 (17.275)
97.9 /1 90.255 (17.463)
97.9 /1 90.937 (16.929)
97.8 / 89.898 (19.148)

TABLE XV

CLAUDE OPUS 4 PROMPTING EFFECTS

Prompt type

Correctness

Efficiency

Quality

Composite

neutral
correctness
efficiency
dual

100 / 72.110 (36.806)
100 / 73.155 (36.397)
100 / 70.865 (37.135)
100 / 72.586 (35.778)

20/ 33.753 (38.389)
20/ 33.557 (38.494)
25/ 37.204 (39.770)
25/ 37.238 (39.625)

93.8 /1 92.584 (6.379)
93.8 /1 92.441 (6.106)
92.4 / 91.859 (6.265)
93.8 /1 92.499 (6.047)

66.4 / 65.378 (24.012)
66.7 / 65.652 (23.723)
66.3 / 66.107 (24.462)
66.7 / 67.403 (22.777)

While all three models evaluated (O4-Mini-High, Gem-
ini 2.5 Pro, and Claude Opus 4) demonstrate impressive
capabilities in generating correct code, only O4-Mini-High
consistently delivered solutions that were also efficient and
maintainable. Gemini 2.5 Pro followed closely, with similarly
high correctness and slightly stronger code quality, but with
occasional inefficiencies. Claude Opus 4, while capable of
generating structurally sound code, displayed significantly
higher variability and frequent inefficiencies, resulting in un-
predictable and often suboptimal performance.

Crucially, these differences were not always apparent
through correctness scores alone. Models that scored highly
on functional correctness sometimes failed to produce efficient
or well-structured solutions—outcomes that would raise red
flags in real-world development. This disconnect underscores
the practical limitations of benchmarks that treat software
development as a binary pass/fail exercise. In production
settings, an inefficient algorithm that passes tests can still cause
unacceptable delays, costs, or scaling bottlenecks. Similarly,
unmaintainable code—even if correct—can incur long-term
costs in debugging, onboarding, and system reliability. The
COMPASS multi-dimensional evaluation benchmark is de-
signed to makes these hidden tradeoffs visible.

The value of a multi-dimensional evaluation framework is
further reinforced by the orthogonality of its core metrics. Cor-
relation and PCA analyses confirm that correctness, efficiency,
and quality capture distinct axes of model behavior. While cor-
rectness and efficiency are moderately correlated (especially
for O4-Mini-High) code quality remains largely independent.
This means that a model’s ability to write readable, modular,
idiomatic code cannot be inferred from whether it solves a

problem correctly or quickly. These findings validate the need
for multidimensional benchmarks: collapsing performance into
a single metric obscures key subtleties that matter to software
engineers and organizations.

The consistency analyses also reveal critical nuances. O4-
Mini-High exhibited not only the highest average performance
but also the most stable behavior across repeated runs and
across tasks. Claude Opus 4, by contrast, fluctuated sig-
nificantly, particularly in correctness and efficiency, raising
concerns about reliability. Even small standard deviations can
translate to substantial differences in outcome quality, espe-
cially when LLMs are used as coding assistants in workflows
that expect dependable behavior. Composite consistency scores
show that some models produce radically different outputs for
the same task under the same conditions.

Prompt framing effects were subtle but informative. While
small in magnitude, the directional alignment between prompt
intent and performance outcomes suggests that model behavior
can be steered, even with minimal prompting. Claude Opus
4, in particular, showed noticeably greater responsiveness
to prompt framing—achieving higher correctness scores un-
der correctness-oriented prompts and better efficiency under
efficiency-oriented prompts. This pattern indicates that less
performant models may benefit more from explicit guidance.
In contrast, O4-Mini-High and Gemini 2.5 Pro displayed
minimal variation across prompt types, suggesting a higher
degree of robustness but also less room for gains from basic
prompt tuning. These findings highlight an opportunity for
more sophisticated methods of instruction, such as dynamic
prompting, contextual tuning, or reinforcement learning from
efficiency and quality objectives, not just correctness.

Collectively, these findings mark a turning point in how we
evaluate Al code generation systems. The field can no longer
afford to assess model performance through the narrow lens
of functional correctness alone. Real software development is
multi-dimensional. The benchmarks should be too.

Implications for Practice and Research

For researchers, COMPASS provides a tool to evaluate not
just whether models can solve problems, but iow they solve
them and at what cost. For practitioners, it offers insight into
which models are production-ready, which require close super-
vision, and where the tradeoffs lie. For model developers, it
highlights new optimization targets: computational efficiency,
structural soundness, and performance stability.

Just as importantly, COMPASS sets a new standard for
scientific rigor in benchmarking. By grounding evaluations in
competitive programming tasks from real contests—supported
by large-scale human baselines and robust statistical valida-
tion—it enables comparisons that are both empirically defen-
sible and practically meaningful. While these tasks are not
direct replicas of industry scenarios, they expose key model
limitations in efficiency, robustness, and code quality under
realistic constraints.

Future Directions

This initial release of COMPASS focuses on Python solu-
tions to algorithmic problems with well-defined performance
constraints. Future work will expand the benchmark in several
directions:

« Language expansion: Add support for additional pro-
gramming languages to enable broader and more repre-
sentative model comparisons.

o Task diversity: Introduce more tasks that reflect real-
istic, real-life programming scenarios—including multi-
file, project-based challenges that better approximate
modern software development workflows.

o Model coverage: Expand evaluations to include a wider
range of models, including open-source alternatives, to
ensure broad benchmarking relevance.

o Prompt complexity: Incorporate a wider range of prompt
types, varying in structure, specificity, and sophistication,
to better understand how prompt design influences model
behavior.

Most urgently, we call on the broader research and engi-
neering communities to stop treating syntactic correctness as
a proxy for software engineering capability. With models now
reaching and exceeding human-level performance in certain
correctness tasks, the question is no longer “Can they write
code that works?”—but “Can they write code that lasts?”

COMPASS is not just a benchmark—it is a call to realign
our standards with the realities of software development. The
future of Al-assisted programming depends on it.

APPENDIX A
HUMAN PERFORMANCE BASELINES

The table below summarizes human performance across the 50 COMPASS benchmark tasks, based on 393,150 real-world submissions from Codility competitive programming
contests. For each task, we report the mean, median, standard deviation (SD), skewness, and total number of submissions.

TABLE XVI: Human percentile baselines across 50 COMPASS tasks.

Task Number Task Name Mean (%) Median (%) SD Skew Submissions
1 array_closest_ascenders 25.6 0 354 2.17 6,001
2 ascending_paths 19.2 0 320 1.80 4,143
3 balanced_password 23.1 9 28.4 1.49 3,640
4 ball_switch_board 30.8 20 336 0.96 4,923
5 beautiful_password 259 12 32.0 1.30 2,759
6 boat_alignment 224 0 33.2 2.03 6,321
7 brackets_rotation 19.6 0 29.2 2.01 6,303
8 cannonballs 243 0 35.1 2.08 8,079
9 cartesian_sequence 13.3 0 28.7 1.39 4,436
10 clocks 23.9 14 315 0.94 8,160
11 count_bounded_slices 37.0 40 33.2 -0.27 27,879
12 count_palindromic_slices 26.3 15.38 29.7 1.11 12,379
13 different_characters 32.8 28 33.9 0.43 5,310
14 double_median 13.0 0 269 1.45 2,462
15 even_sums_game 129 0 274 1.41 7,441
16 fill_the_gaps 21.3 0 329 1.95 2,614
17 flooded_island 404 44 357 -0.30 4,948
18 grocery_store 22.7 0 34.1 2.00 8,974
19 hamiltonian_routes_count 11.0 0 27.0 1.23 3,084
20 hit_the_number 20.5 0 290 2.12 5,955
21 increasing_sequences 20.3 11 26.8 1.04 5,464
22 leader_slice_inc 22.1 0 30.8 2.15 10,312
23 letter_cover 13.6 0 240 1.71 30,257
24 longest_nonnegative_sum_slice 35.0 36 321 -0.09 5,837
25 max_distance_monotonic 333 22 34.8 0.98 8,639
26 max_not_present 222 6 30.6 1.59 5,419
27 max_path_from_the_left_top_corner 36.5 44 35.6 -0.63 8,313
28 max_square_on_matrix 30.3 15 335 1.37 6,036
29 max_zero_product 20.3 0 30.0 2.03 5,305
30 min_abs_sum 35.0 27 349 0.69 74,229
31 min_router_peripherality 16.6 0 290 1.72 4,146
32 min_trailing_zeros 26.2 5 33.9 1.88 4,887
33 minfuds 152 0 29.0 1.57 3,959
34 multivitamin 27.5 23 294 0.46 8,849
35 number_of_zeros 16.1 0 269 1.80 4,196
36 odd_network 18.1 0 314 1.73 3,493
37 palindromes 17.4 0 275 1.90 2,694
38 pets_and_toys 20.3 0 33.6 1.81 4,514
39 prefix_max_product 36.0 37 30.1 -0.10 7,278
40 public_transport_tickets_algo 20.1 0 31.1 1.94 6,081
41 refueling 20.0 0 308 1.95 3,818
42 replacing_books 29.5 7 343 1.96 5,496
43 sheep_and_sunshades 34.4 35 32.8 -0.06 6,689
44 sprinklers_arrangement 244 0 358 2.04 2,967
45 stones 12.3 0 261 1.42 2,717
46 string_modification 21.7 0 319 2.04 3,158
47 theater_tickets 28.0 17 309 1.07 4,441
48 three_letters_blocks 12.9 0 26.2 1.47 3,478
49 trek_and_swim 14.3 0 303 1.41 8,334
50 trip_planning 20.0 0 311 1.94 6,333

APPENDIX B
CORRECTNESS SCORES BY TASK AND MODEL

The table below reports the median, mean, and standard deviation of correctness scores for each model across every task. A score of 100 indicates that the model’s submitted
solution was fully correct and accepted by all test cases. Lower scores reflect partially correct or failed solutions. Abbreviations: C = Claude-Opus—4, G = Gemini-2.5-Pro,
O = 04-Mini-High

TABLE XVII: Correctness by task and model: medians, means, and standard deviations.

Task Number CMed GMed OMed CMean G Mean OMean CSD GSD OSD

1 100.0 100.0 100.0 82.5 100.0 98.4 333 0.0 125
2 40.0 100.0 100.0 43.1 100.0 100.0 20.8 0.0 0.0
3 100.0 100.0 100.0 95.8 100.0 97.1 19.2 0.0 14.4
4 100.0 100.0 100.0 76.2 94.7 99.1 28.0 21.2 7.5
5 100.0 100.0 100.0 89.1 100.0 100.0 315 0.0 0.0
6 100.0 100.0 100.0 87.5 98.4 100.0 24.6 125 0.0
7 25.0 58.3 58.3 32.9 61.1 57.2 23.0 25.4 4.2
8 100.0 100.0 100.0 99.4 100.0 98.4 3.5 0.0 125
9 0.0 100.0 100.0 42 94.2 100.0 7.5 22.7 0.0
10 37.5 100.0 100.0 46.1 98.0 98.4 15.2 11.0 12.5
11 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
12 100.0 100.0 100.0 59.4 100.0 100.0 49.5 0.0 0.0
13 66.7 100.0 100.0 66.5 95.7 94.4 6.4 10.4 21.6
14 429 100.0 100.0 47.1 100.0 96.0 46.6 0.0 18.8
15 0.0 28.6 100.0 11.8 28.1 100.0 259 26.9 0.0
16 14.3 100.0 100.0 15.0 82.6 87.5 17.2 33.7 28.3
17 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
18 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
19 50.0 100.0 100.0 71.1 100.0 100.0 249 0.0 0.0
20 83.3 100.0 100.0 68.2 96.6 94.8 32.1 17.6 20.8
21 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
22 80.0 100.0 100.0 85.6 91.6 87.5 17.6 25.1 28.2
23 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
24 66.7 100.0 100.0 55.7 100.0 100.0 444 0.0 0.0
25 100.0 100.0 100.0 96.6 96.2 100.0 10.4 18.1 0.0
26 0.0 100.0 100.0 10.7 67.7 100.0 17.7 41.6 0.0
27 100.0 100.0 100.0 100.0 97.7 100.0 0.0 11.1 0.0
28 100.0 100.0 100.0 922 100.0 100.0 27.0 0.0 0.0
29 100.0 100.0 100.0 98.8 100.0 97.5 10.0 0.0 13.1
30 100.0 100.0 100.0 90.9 96.9 100.0 28.6 17.5 0.0
31 100.0 100.0 100.0 100.0 98.4 100.0 0.0 125 0.0
32 100.0 100.0 100.0 93.4 97.9 100.0 8.6 6.5 0.0
33 100.0 100.0 100.0 100.0 100.0 99.0 0.0 0.0 5.8
34 100.0 100.0 100.0 99.4 99.8 99.6 4.7 1.6 3.1
35 50.0 75.0 100.0 55.9 83.2 100.0 26.6 19.4 0.0
36 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
37 333 100.0 75.0 359 100.0 66.7 17.1 0.0 34.2
38 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
39 100.0 100.0 100.0 98.0 100.0 98.4 11.9 0.0 12.5
40 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
41 80.0 100.0 100.0 75.6 97.5 97.2 12.7 12.0 13.9
42 66.7 100.0 100.0 70.7 98.3 100.0 135 12.6 0.0
43 100.0 100.0 100.0 93.2 98.2 68.8 17.0 12.6 46.7
44 40.0 100.0 100.0 473 100.0 98.4 36.2 0.0 125
45 28.6 100.0 57.1 29.0 78.8 57.8 2.5 29.7 40.8
46 28.6 100.0 100.0 333 80.1 98.0 21.6 33.1 5.6
47 333 100.0 100.0 55.9 96.4 98.8 28.8 14.3 7.4
48 91.7 100.0 100.0 68.1 94.1 97.3 37.5 23.0 155
49 100.0 100.0 100.0 92.2 93.8 95.9 22.7 19.8 17.5

50 0.0 100.0 100.0 34.6 75.2 97.8 419 36.0 11.4

APPENDIX C
EFFICIENCY SCORES BY TASK AND MODEL

The table below reports the median, mean, and standard deviation of efficiency scores for each model across every task. A score of 100 indicates the solution was highly
optimized, with minimal runtime, memory usage, and/or number of attempts. Lower scores indicate less efficient performance. Abbreviations: C = Claude-Opus—-4, G =
Gemini-2.5-Pro, O = O4-Mini-High.

TABLE XVIII: Efficiency by task and model: medians, means, and standard deviations.

Task Number CMed GMed OMed CMean G Mean OMean CSD GSD OSD

1 100.0 100.0 100.0 62.5 100.0 98.4 48.8 0.0 125
2 25.0 100.0 100.0 27.7 100.0 100.0 26.0 0.0 0.0
3 0.0 20.0 60.0 0.0 19.7 55.0 0.0 2.5 25.2
4 40.0 40.0 100.0 259 53.1 98.4 18.1 28.6 12.5
5 100.0 100.0 100.0 88.3 100.0 100.0 31.8 0.0 0.0
6 57.1 57.1 85.7 413 65.0 89.7 29.8 13.9 10.0
7 0.0 0.0 333 1.0 15.1 29.7 5.8 16.7 13.4
8 0.0 100.0 100.0 1.3 100.0 98.4 8.6 0.0 125
9 0.0 50.0 100.0 0.3 62.2 93.2 2.1 35.4 18.5
10 0.0 100.0 100.0 9.1 94.6 98.4 214 18.7 12.5
11 100.0 100.0 100.0 93.4 100.0 100.0 20.8 0.0 0.0
12 333 100.0 100.0 20.5 98.3 100.0 17.3 9.9 0.0
13 333 100.0 100.0 24.5 90.6 93.8 18.1 21.8 24.4
14 18.2 100.0 100.0 49.9 100.0 96.7 39.8 0.0 17.5
15 0.0 0.0 100.0 0.0 15.6 100.0 0.0 27.6 0.0
16 0.0 100.0 100.0 2.1 70.3 81.8 13.1 429 34.1
17 0.0 100.0 100.0 0.8 100.0 100.0 4.4 0.0 0.0
18 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
19 0.0 100.0 100.0 0.0 100.0 100.0 0.0 0.0 0.0
20 222 100.0 100.0 434 92.4 94.4 424 26.0 21.9
21 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
22 125 100.0 100.0 13.7 92.6 94.1 154 23.4 17.7
23 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
24 333 100.0 100.0 33.1 100.0 100.0 23.8 0.0 0.0
25 100.0 100.0 100.0 77.0 94.5 100.0 40.2 22.0 0.0
26 0.0 60.0 100.0 59 51.6 100.0 13.7 38.7 0.0
27 333 333 100.0 32.8 51.6 99.0 42 38.0 8.3
28 0.0 100.0 100.0 16.1 100.0 100.0 17.8 0.0 0.0
29 25.0 100.0 100.0 34.8 100.0 98.4 38.5 0.0 125
30 40.0 100.0 100.0 31.6 96.9 100.0 13.2 17.5 0.0
31 14.3 100.0 100.0 34.4 98.4 99.8 32.4 125 1.8
32 100.0 100.0 100.0 99.3 99.0 100.0 2.7 33 0.0
33 40.0 100.0 100.0 37.5 95.6 98.8 6.7 11.0 10.0
34 0.0 100.0 100.0 53 99.1 99.1 12.5 7.5 7.5
35 0.0 100.0 100.0 10.9 95.5 100.0 26.9 20.5 0.0
36 100.0 100.0 100.0 100.0 100.0 100.0 0.0 0.0 0.0
37 20.0 100.0 50.0 20.0 100.0 58.8 0.0 0.0 38.5
38 100.0 100.0 100.0 83.6 100.0 100.0 23.7 0.0 0.0
39 222 100.0 100.0 25.5 100.0 98.4 11.1 0.0 12.5
40 100.0 100.0 100.0 99.2 100.0 100.0 6.3 0.0 0.0
41 333 100.0 100.0 32.0 96.6 96.6 124 16.0 16.0
42 37.5 100.0 100.0 47.1 98.2 100.0 222 12.6 0.0
43 0.0 100.0 100.0 4.7 98.2 68.8 113 12.6 46.7
44 0.0 100.0 100.0 29.3 100.0 98.4 449 0.0 125
45 0.0 100.0 40.0 0.6 70.6 51.6 35 39.0 427
46 25.0 100.0 100.0 23.8 82.8 99.2 53 34.8 6.2
47 12,5 100.0 100.0 15.4 94.9 98.8 15.2 20.0 9.4
48 60.0 70.0 100.0 43.1 73.6 90.8 29.8 22.1 19.1
49 20.0 40.0 80.0 23.1 59.1 71.5 13.0 30.9 23.2

50 0.0 16.7 100.0 0.0 424 96.1 0.0 389 16.7

APPENDIX D
QUALITY SCORES BY TASK AND MODEL

The table below reports the median, mean, and standard deviation of quality scores for each model across every task. A score of 100 reflects the highest quality solutions, based
on criteria such as code readability, structure, naming, and adherence to clean coding practices. Lower scores indicate suboptimal or poorly structured code. Abbreviations: C =
Claude-Opus-4, G = Gemini-2.5-Pro, O = O4-Mini-High.

TABLE XIX: Quality by task and model: medians, means, and standard deviations.

Task Number CMed GMed OMed CMean G Mean OMean CSD GSD OSD

1 95.1 94.6 95.3 94.5 94.7 95.2 2.1 0.5 0.8
2 92.4 96.8 89.5 92.6 95.0 91.0 4.5 4.8 2.5
3 92.4 89.3 86.7 92.3 89.3 85.7 1.5 3.0 29
4 88.2 88.8 89.5 89.2 88.9 91.1 4.0 4.1 32
5 100.0 100.0 98.4 99.8 99.8 98.6 0.7 0.6 0.5
6 95.3 98.4 95.3 95.0 96.7 95.2 4.5 2.0 1.8
7 89.5 89.5 94.0 92.2 90.8 92.6 5.3 2.3 3.4
8 98.4 94.4 92.4 98.1 94.3 91.7 1.2 1.9 32
9 91.4 93.5 94.5 90.7 92.7 92.4 3.4 32 3.8
10 96.0 93.4 92.4 96.9 92.9 91.0 2.4 2.6 2.8
11 92.4 100.0 100.0 93.0 99.7 98.7 1.8 1.1 2.9
12 92.4 100.0 89.5 90.9 98.5 91.2 3.4 2.5 33
13 90.9 94.8 88.5 91.9 93.2 89.0 3.7 3.6 4.6
14 96.8 96.8 95.3 94.8 95.5 93.7 2.8 2.1 3.8
15 88.5 94.5 42.0 87.8 92.7 459 3.0 4.9 10.0
16 785 94.0 86.0 79.0 91.5 85.4 42 5.0 6.3
17 93.8 92.2 90.4 93.7 93.1 92.4 0.8 4.7 4.5
18 95.3 94.8 95.3 94.3 94.0 95.4 1.6 2.0 1.5
19 85.7 83.4 38.1 84.0 81.6 41.5 3.3 6.9 73
20 89.5 94.3 92.4 89.1 92.2 91.2 39 3.4 33
21 96.7 96.6 96.8 96.6 96.6 98.0 0.5 0.9 1.6
22 95.3 94.5 94.0 95.9 93.8 92.1 2.8 3.7 3.6
23 95.0 82.8 472 94.2 84.0 47.8 3.6 6.5 7.8
24 96.8 95.3 95.3 96.2 96.4 96.5 3.8 22 1.9
25 98.4 95.3 95.3 97.5 95.6 96.5 3.0 1.6 1.6
26 88.9 87.5 49.0 90.0 88.6 47.7 6.7 6.5 8.9
27 96.8 92.7 89.5 95.6 91.9 90.8 2.7 5.5 33
28 100.0 95.3 95.3 97.6 95.3 95.6 3.0 1.8 1.7
29 89.0 89.2 87.9 91.5 89.1 86.7 5.6 3.8 3.1
30 95.3 89.0 98.4 94.7 89.3 97.4 49 3.4 2.0
31 95.3 89.9 88.1 93.6 90.9 87.9 3.0 2.6 3.6
32 80.8 92.4 87.4 81.0 90.8 86.9 4.7 4.3 2.7
33 96.8 98.4 87.2 96.6 98.2 87.0 3.1 1.5 4.9
34 98.4 94.8 96.4 98.7 93.7 95.3 0.9 3.0 29
35 94.8 100.0 73.8 91.5 97.6 82.6 5.5 33 16.5
36 96.8 100.0 93.8 97.4 96.6 94.8 2.5 4.0 2.8
37 84.5 83.3 78.1 86.7 84.7 79.9 6.2 59 8.7
38 88.5 89.3 94.8 88.7 90.6 94.7 0.8 2.6 1.2
39 88.5 100.0 94.5 91.1 98.8 91.5 53 1.8 4.7
40 96.6 100.0 100.0 96.9 99.9 99.5 1.4 0.5 1.2
41 92.4 88.0 87.9 92.3 88.1 86.6 43 3.7 3.0
42 92.4 100.0 100.0 93.6 98.4 99.7 2.8 2.3 1.2
43 100.0 91.4 87.6 99.5 92.3 86.9 2.1 3.5 3.4
44 82.2 100.0 100.0 85.2 100.0 99.9 8.4 0.0 0.4
45 100.0 100.0 96.8 94.0 99.7 95.6 7.2 1.7 43
46 80.0 92.6 92.8 79.9 89.6 91.4 45 5.6 3.4
47 95.8 100.0 96.8 95.0 99.9 96.4 5.4 0.6 3.7
48 87.5 87.3 93.5 86.3 87.5 91.7 52 5.7 5.0
49 93.8 92.2 87.9 92.5 91.6 86.9 2.1 3.6 4.2

50 86.7 78.8 82.4 86.5 78.6 82.5 1.5 4.6 0.6

APPENDIX E
COMPOSITE SCORES BY TASK AND MODEL

The table below reports the median, mean, and standard deviation of composite scores for each model across every task. These scores combine correctness, efficiency, and code
quality into a single metric, offering a holistic view of model performance. A score of 100 represents a solution that is fully correct, highly efficient, and of excellent quality.
Abbreviations: C = Claude-Opus-4, G = Gemini-2.5-Pro, O = 04-Mini-High.

TABLE XX: Composite by task and model: medians, means, and standard deviations.

Task Number CMed GMed OMed CMean G Mean OMean CSD GSD OSD

1 98.2 98.2 98.4 79.8 98.2 96.9 25.1 0.2 123
2 51.5 98.9 96.5 54.5 98.3 97.0 14.6 1.6 0.8
3 64.1 69.8 80.4 62.7 69.7 78.8 6.8 1.3 13.0
4 74.8 76.6 96.5 63.8 78.4 96.2 15.3 16.1 6.7
5 100.0 100.0 99.5 89.3 99.9 99.5 30.2 0.2 0.2
6 84.1 85.2 93.7 74.6 86.2 95.0 17.5 11.6 3.4
7 39.0 57.6 61.9 42.0 55.2 59.8 8.0 12.0 6.2
8 66.1 98.2 97.5 66.3 98.1 96.2 1.9 0.6 8.6
9 0.0 81.4 98.2 10.0 82.6 95.2 16.2 18.8 6.5
10 45.8 97.5 97.5 50.7 95.2 95.9 11.6 9.2 8.6
11 97.5 100.0 100.0 95.5 99.9 99.6 6.7 0.4 1.0
12 725 100.0 96.5 56.9 98.9 97.1 21.8 3.5 1.1
13 63.0 98.2 96.0 60.9 93.2 924 7.8 11.0 14.8
14 68.6 98.9 97.9 63.9 98.5 95.5 26.0 0.7 11.9
15 29.7 38.6 85.4 332 42.6 88.7 8.8 22.1 9.2
16 30.5 97.7 94.8 32.0 80.0 84.4 10.2 289 22.6
17 64.6 97.4 96.8 64.8 97.7 97.5 1.6 1.6 1.5
18 98.4 98.3 98.4 98.1 98.0 98.5 0.5 0.7 0.5
19 45.7 94.5 79.4 51.7 94.0 82.3 8.3 2.4 6.2
20 63.6 98.1 97.5 66.9 93.7 93.5 21.3 13.4 14.3
21 98.9 98.9 98.9 98.9 98.9 99.4 0.2 0.3 0.5
22 66.1 98.1 97.5 65.1 91.7 91.2 6.9 19.4 13.0
23 98.3 94.3 82.4 98.1 94.7 83.2 1.2 22 4.0
24 63.4 98.4 98.4 61.7 98.8 98.8 219 0.7 0.6
25 98.4 98.4 98.4 90.3 95.5 98.8 15.4 13.1 0.5
26 32.8 82.4 100.0 35.5 67.0 92.4 9.5 30.3 8.9
27 76.7 75.4 96.5 76.1 80.4 96.6 1.8 15.5 3.0
28 66.7 98.4 98.4 68.6 98.4 98.5 12.1 0.6 0.6
29 70.1 96.4 96.1 75.0 96.4 95.3 12.9 1.3 8.8
30 78.4 96.3 99.5 72.4 94.3 99.1 14.1 11.9 0.7
31 69.9 96.6 96.0 76.0 95.9 95.9 11.1 8.4 1.2
32 91.3 97.4 95.8 91.2 95.9 95.6 3.6 3.4 0.9
33 78.9 99.5 95.6 78.0 97.9 94.9 3.0 3.5 5.7
34 66.1 98.2 98.8 67.8 97.5 98.0 3.7 29 3.5
35 484 91.7 91.3 52.8 92.1 94.2 16.4 12.2 55
36 98.9 100.0 97.9 99.1 98.9 98.3 0.8 1.3 0.9
37 49.0 94.8 69.5 47.6 95.8 67.6 5.8 2.6 24.4
38 96.1 96.4 98.3 90.8 96.9 98.2 7.8 0.9 0.4
39 70.5 100.0 98.2 71.5 99.6 95.7 39 0.6 12.2
40 98.9 100.0 100.0 98.7 100.0 99.8 2.1 0.2 0.4
41 68.6 96.0 95.8 66.7 94.1 93.5 7.5 9.8 9.7
42 65.5 100.0 100.0 70.4 98.3 99.9 12.2 8.3 0.4
43 66.7 96.5 94.6 65.8 95.7 65.8 4.9 12.3 44.7
44 41.6 100.0 100.0 53.1 100.0 98.4 29.2 0.0 125
45 429 100.0 65.7 41.2 82.0 59.8 3.1 25.7 39.9
46 453 94.0 97.4 45.7 81.4 96.2 8.1 29.8 3.8
47 47.8 100.0 98.9 55.4 97.1 98.0 15.1 11.4 5.5
48 80.4 85.8 97.6 65.8 84.2 93.3 22.8 18.7 11.3
49 713 78.3 89.3 69.3 81.5 86.8 10.8 14.8 13.1

50 29.5 66.7 94.1 404 62.2 92.1 13.9 284 9.0

COMBINED CORRECTNESS AND EFFICIENCY PERCENTILE SCORES BY TASK AND MODEL

APPENDIX F

The table below shows the combined correctness and efficiency scores for each model, alongside the human average performance for each task. For each model, the raw score is
followed by its percentile rank in parentheses, calculated relative to human performance. This allows for direct, task-by-task comparisons between Al-generated code and competitive
human submissions. The percentile scores highlight not just how well each model performs, but how often that performance would outperform human programmers under similar

constraints.

TABLE XXI: Combined Correctness and Efficiency: Human vs. Al (raw score with human-relative
percentile in parentheses).

Task # Difficulty Human Mean Claude-Opus-4 Gemini-2.5-Pro O4-Mini-High
1 medium 25.6 72.5 91) 100.0 (98) 98.4 (98)
2 hard 19.2 35.4 (69) 100.0 (99) 100.0 (99)
3 hard 23.1 47.9 (81) 59.9 (90) 76.0 (97)
4 hard 30.8 51.0 (73) 73.9 (90) 98.8 (98)
5 medium 259 88.7 (98) 100.0 (99) 100.0 (99)
6 hard 224 64.4 (90) 81.7 (96) 94.8 (99)
7 hard 19.6 16.9 (46) 38.1 (74) 43.5 (79)
8 hard 243 50.4 (77) 100.0 (98) 98.4 (98)
9 hard 13.3 2.2 (35) 78.2 (99) 96.6 (100)

10 hard 23.9 27.6 (55) 96.3 (99) 98.4 (99)
11 medium 37.0 96.7 (96) 100.0 (97) 100.0 (97)
12 hard 26.3 40.0 (68) 99.2 (99) 100.0 (99)
13 medium 328 45.5 (65) 93.2 (96) 94.1 (96)
14 hard 13.0 48.5 91) 100.0 (100) 96.3 (100)
15 hard 12.9 5.9 (40) 21.9 (63) 100.0 (100)
16 hard 21.3 8.6 (35) 76.5 (95) 84.7 (97)
17 hard 40.4 50.4 (61) 100.0 (95) 100.0 (95)
18 hard 22.7 100.0 (99) 100.0 (99) 100.0 (99)
19 hard 11.0 35.5(82) 100.0 (100) 100.0 (100)
20 hard 20.5 55.8 (89) 94.5 (99) 94.6 (99)
21 medium 20.3 100.0 (100) 100.0 (100) 100.0 (100)
22 hard 22.1 49.6 (81) 92.1 (99) 90.8 (99)
23 hard 13.6 100.0 (100) 100.0 (100) 100.0 (100)
24 medium 35.0 44.4 (62) 100.0 (98) 100.0 (98)
25 hard 333 86.8 (94) 95.3 (96) 100.0 (97)
26 hard 222 8.3 (32) 59.6 (89) 100.0 (99)
27 hard 36.5 66.4 (80) 74.7 (86) 99.5 (96)
28 medium 30.3 54.1 (76) 100.0 (98) 100.0 (98)
29 hard 20.3 66.8 (94) 100.0 (100) 98.0 (100)
30 hard 35.0 61.2 (77) 96.9 (96) 100.0 (97)
31 hard 16.6 67.2 (96) 98.4 (100) 99.9 (100)
32 hard 26.2 96.3 (98) 98.5 (98) 100.0 (99)
33 hard 15.2 68.8 (97) 97.8 (100) 98.9 (100)
34 medium 27.5 52.4 (80) 99.5 (99) 99.3 (99)
35 hard 16.1 33.4 (74) 89.3 (100) 100.0 (100)
36 hard 18.1 100.0 (100) 100.0 (100) 100.0 (100)
37 hard 17.4 27.9 (65) 100.0 (100) 62.8 (95)
38 hard 20.3 91.8 (98) 100.0 (99) 100.0 (99)
39 hard 36.0 61.8 (80) 100.0 (98) 98.4 (98)
40 hard 20.1 99.6 (99) 100.0 (99) 100.0 (99)
41 hard 20.0 53.8 (86) 97.0 (99) 96.9 (99)
42 medium 29.5 58.9 (80) 98.2 (98) 100.0 (98)
43 hard 34.4 49.0 (67) 98.2 (97) 68.8 (85)
44 hard 24.4 38.3 (65) 100.0 (98) 98.4 (98)
45 hard 12.3 14.8 (54) 74.7 (99) 54.7 (95)
46 hard 21.7 28.6 (59) 81.5 (97) 98.6 (99)
47 hard 28.0 35.6 (60) 95.7 (99) 98.8 (99)
48 hard 12.9 55.6 (95) 83.8 (100) 94.0 (100)
49 hard 14.3 57.6 (92) 76.5 (98) 86.7 (99)
50 hard 20.0 17.3 (47) 58.8 (89) 97.0 (99)

ACKNOWLEDGMENT

The authors thank Ilya Tillis of Codility for valuable guidance on experimental design.

(1]
(2]
[3]
(4]
[3]
(6]

(7]
(8]
(91

REFERENCES

M. Chen et al., “Evaluating large language models trained on code,” arXiv preprint arXiv:2107.03374, 2021.

J. Austin et al., “Program synthesis with large language models,” arXiv preprint arXiv:2108.07732, 2021.

C. E. Jimenez et al., “Swe-bench: Can language models resolve real-world github issues?” arXiv preprint arXiv:2310.06770, 2023.
Z. Xing et al., “Hackerrank-astra: A benchmark for evaluating 1lms in coding competitions,” arXiv preprint, 2025.

J.-L. Letouzey and M. Ilkiewicz, “Managing technical debt with the sqale method,” IEEE Software, vol. 29, no. 6, pp. 44-51, 2012.
S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476493,

1994.

D. Hendrycks et al., “Measuring coding challenge competence with apps,” arXiv preprint arXiv:2105.09938, 2021.
Y. Lai et al., “Ds-1000: A natural and reliable benchmark for data science code generation,” arXiv preprint arXiv:2211.11501, 2022.
J. P. Campbell, “Modeling the performance prediction problem in industrial and organizational psychology,” in Handbook of Industrial and Organizational

Psychology, 2nd ed., M. D. Dunnette and L. M. Hough, Eds.

Palo Alto, CA: Consulting Psychologists Press, 1990, vol. 1, pp. 687-732.

	Codility_Graphics_2025_Documents_COMPASS_Cover_Light_wk_v1-0
	2508.13757v1

